MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscss Structured version   Visualization version   GIF version

Theorem iscss 21608
Description: The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssval.o = (ocv‘𝑊)
cssval.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
iscss (𝑊𝑋 → (𝑆𝐶𝑆 = ( ‘( 𝑆))))

Proof of Theorem iscss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 cssval.o . . . 4 = (ocv‘𝑊)
2 cssval.c . . . 4 𝐶 = (ClSubSp‘𝑊)
31, 2cssval 21607 . . 3 (𝑊𝑋𝐶 = {𝑠𝑠 = ( ‘( 𝑠))})
43eleq2d 2814 . 2 (𝑊𝑋 → (𝑆𝐶𝑆 ∈ {𝑠𝑠 = ( ‘( 𝑠))}))
5 id 22 . . . 4 (𝑆 = ( ‘( 𝑆)) → 𝑆 = ( ‘( 𝑆)))
6 fvex 6839 . . . 4 ( ‘( 𝑆)) ∈ V
75, 6eqeltrdi 2836 . . 3 (𝑆 = ( ‘( 𝑆)) → 𝑆 ∈ V)
8 id 22 . . . 4 (𝑠 = 𝑆𝑠 = 𝑆)
9 2fveq3 6831 . . . 4 (𝑠 = 𝑆 → ( ‘( 𝑠)) = ( ‘( 𝑆)))
108, 9eqeq12d 2745 . . 3 (𝑠 = 𝑆 → (𝑠 = ( ‘( 𝑠)) ↔ 𝑆 = ( ‘( 𝑆))))
117, 10elab3 3644 . 2 (𝑆 ∈ {𝑠𝑠 = ( ‘( 𝑠))} ↔ 𝑆 = ( ‘( 𝑆)))
124, 11bitrdi 287 1 (𝑊𝑋 → (𝑆𝐶𝑆 = ( ‘( 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3438  cfv 6486  ocvcocv 21585  ClSubSpccss 21586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-ocv 21588  df-css 21589
This theorem is referenced by:  cssi  21609  iscss2  21611  obslbs  21655  hlhillcs  41940
  Copyright terms: Public domain W3C validator