![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscss | Structured version Visualization version GIF version |
Description: The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cssval.o | ⊢ ⊥ = (ocv‘𝑊) |
cssval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
iscss | ⊢ (𝑊 ∈ 𝑋 → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cssval.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
2 | cssval.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
3 | 1, 2 | cssval 21613 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
4 | 3 | eleq2d 2815 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝑆 ∈ 𝐶 ↔ 𝑆 ∈ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))})) |
5 | id 22 | . . . 4 ⊢ (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) → 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆))) | |
6 | fvex 6910 | . . . 4 ⊢ ( ⊥ ‘( ⊥ ‘𝑆)) ∈ V | |
7 | 5, 6 | eqeltrdi 2837 | . . 3 ⊢ (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) → 𝑆 ∈ V) |
8 | id 22 | . . . 4 ⊢ (𝑠 = 𝑆 → 𝑠 = 𝑆) | |
9 | 2fveq3 6902 | . . . 4 ⊢ (𝑠 = 𝑆 → ( ⊥ ‘( ⊥ ‘𝑠)) = ( ⊥ ‘( ⊥ ‘𝑆))) | |
10 | 8, 9 | eqeq12d 2744 | . . 3 ⊢ (𝑠 = 𝑆 → (𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)) ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
11 | 7, 10 | elab3 3675 | . 2 ⊢ (𝑆 ∈ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))} ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆))) |
12 | 4, 11 | bitrdi 287 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 {cab 2705 Vcvv 3471 ‘cfv 6548 ocvcocv 21591 ClSubSpccss 21592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 df-ocv 21594 df-css 21595 |
This theorem is referenced by: cssi 21615 iscss2 21617 obslbs 21663 hlhillcs 41435 |
Copyright terms: Public domain | W3C validator |