MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscss Structured version   Visualization version   GIF version

Theorem iscss 21236
Description: The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssval.o = (ocv‘𝑊)
cssval.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
iscss (𝑊𝑋 → (𝑆𝐶𝑆 = ( ‘( 𝑆))))

Proof of Theorem iscss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 cssval.o . . . 4 = (ocv‘𝑊)
2 cssval.c . . . 4 𝐶 = (ClSubSp‘𝑊)
31, 2cssval 21235 . . 3 (𝑊𝑋𝐶 = {𝑠𝑠 = ( ‘( 𝑠))})
43eleq2d 2820 . 2 (𝑊𝑋 → (𝑆𝐶𝑆 ∈ {𝑠𝑠 = ( ‘( 𝑠))}))
5 id 22 . . . 4 (𝑆 = ( ‘( 𝑆)) → 𝑆 = ( ‘( 𝑆)))
6 fvex 6905 . . . 4 ( ‘( 𝑆)) ∈ V
75, 6eqeltrdi 2842 . . 3 (𝑆 = ( ‘( 𝑆)) → 𝑆 ∈ V)
8 id 22 . . . 4 (𝑠 = 𝑆𝑠 = 𝑆)
9 2fveq3 6897 . . . 4 (𝑠 = 𝑆 → ( ‘( 𝑠)) = ( ‘( 𝑆)))
108, 9eqeq12d 2749 . . 3 (𝑠 = 𝑆 → (𝑠 = ( ‘( 𝑠)) ↔ 𝑆 = ( ‘( 𝑆))))
117, 10elab3 3677 . 2 (𝑆 ∈ {𝑠𝑠 = ( ‘( 𝑠))} ↔ 𝑆 = ( ‘( 𝑆)))
124, 11bitrdi 287 1 (𝑊𝑋 → (𝑆𝐶𝑆 = ( ‘( 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  {cab 2710  Vcvv 3475  cfv 6544  ocvcocv 21213  ClSubSpccss 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-ocv 21216  df-css 21217
This theorem is referenced by:  cssi  21237  iscss2  21239  obslbs  21285  hlhillcs  40833
  Copyright terms: Public domain W3C validator