Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscss | Structured version Visualization version GIF version |
Description: The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cssval.o | ⊢ ⊥ = (ocv‘𝑊) |
cssval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
iscss | ⊢ (𝑊 ∈ 𝑋 → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cssval.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
2 | cssval.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
3 | 1, 2 | cssval 20885 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
4 | 3 | eleq2d 2826 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝑆 ∈ 𝐶 ↔ 𝑆 ∈ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))})) |
5 | id 22 | . . . 4 ⊢ (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) → 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆))) | |
6 | fvex 6784 | . . . 4 ⊢ ( ⊥ ‘( ⊥ ‘𝑆)) ∈ V | |
7 | 5, 6 | eqeltrdi 2849 | . . 3 ⊢ (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) → 𝑆 ∈ V) |
8 | id 22 | . . . 4 ⊢ (𝑠 = 𝑆 → 𝑠 = 𝑆) | |
9 | 2fveq3 6776 | . . . 4 ⊢ (𝑠 = 𝑆 → ( ⊥ ‘( ⊥ ‘𝑠)) = ( ⊥ ‘( ⊥ ‘𝑆))) | |
10 | 8, 9 | eqeq12d 2756 | . . 3 ⊢ (𝑠 = 𝑆 → (𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)) ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
11 | 7, 10 | elab3 3619 | . 2 ⊢ (𝑆 ∈ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))} ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆))) |
12 | 4, 11 | bitrdi 287 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2110 {cab 2717 Vcvv 3431 ‘cfv 6432 ocvcocv 20863 ClSubSpccss 20864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-ov 7274 df-ocv 20866 df-css 20867 |
This theorem is referenced by: cssi 20887 iscss2 20889 obslbs 20935 hlhillcs 39972 |
Copyright terms: Public domain | W3C validator |