MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscss Structured version   Visualization version   GIF version

Theorem iscss 21701
Description: The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssval.o = (ocv‘𝑊)
cssval.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
iscss (𝑊𝑋 → (𝑆𝐶𝑆 = ( ‘( 𝑆))))

Proof of Theorem iscss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 cssval.o . . . 4 = (ocv‘𝑊)
2 cssval.c . . . 4 𝐶 = (ClSubSp‘𝑊)
31, 2cssval 21700 . . 3 (𝑊𝑋𝐶 = {𝑠𝑠 = ( ‘( 𝑠))})
43eleq2d 2827 . 2 (𝑊𝑋 → (𝑆𝐶𝑆 ∈ {𝑠𝑠 = ( ‘( 𝑠))}))
5 id 22 . . . 4 (𝑆 = ( ‘( 𝑆)) → 𝑆 = ( ‘( 𝑆)))
6 fvex 6919 . . . 4 ( ‘( 𝑆)) ∈ V
75, 6eqeltrdi 2849 . . 3 (𝑆 = ( ‘( 𝑆)) → 𝑆 ∈ V)
8 id 22 . . . 4 (𝑠 = 𝑆𝑠 = 𝑆)
9 2fveq3 6911 . . . 4 (𝑠 = 𝑆 → ( ‘( 𝑠)) = ( ‘( 𝑆)))
108, 9eqeq12d 2753 . . 3 (𝑠 = 𝑆 → (𝑠 = ( ‘( 𝑠)) ↔ 𝑆 = ( ‘( 𝑆))))
117, 10elab3 3686 . 2 (𝑆 ∈ {𝑠𝑠 = ( ‘( 𝑠))} ↔ 𝑆 = ( ‘( 𝑆)))
124, 11bitrdi 287 1 (𝑊𝑋 → (𝑆𝐶𝑆 = ( ‘( 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  {cab 2714  Vcvv 3480  cfv 6561  ocvcocv 21678  ClSubSpccss 21679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-ocv 21681  df-css 21682
This theorem is referenced by:  cssi  21702  iscss2  21704  obslbs  21750  hlhillcs  41964
  Copyright terms: Public domain W3C validator