| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscss | Structured version Visualization version GIF version | ||
| Description: The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cssval.o | ⊢ ⊥ = (ocv‘𝑊) |
| cssval.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| iscss | ⊢ (𝑊 ∈ 𝑋 → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssval.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 2 | cssval.c | . . . 4 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 3 | 1, 2 | cssval 21591 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) |
| 4 | 3 | eleq2d 2814 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝑆 ∈ 𝐶 ↔ 𝑆 ∈ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))})) |
| 5 | id 22 | . . . 4 ⊢ (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) → 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆))) | |
| 6 | fvex 6871 | . . . 4 ⊢ ( ⊥ ‘( ⊥ ‘𝑆)) ∈ V | |
| 7 | 5, 6 | eqeltrdi 2836 | . . 3 ⊢ (𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)) → 𝑆 ∈ V) |
| 8 | id 22 | . . . 4 ⊢ (𝑠 = 𝑆 → 𝑠 = 𝑆) | |
| 9 | 2fveq3 6863 | . . . 4 ⊢ (𝑠 = 𝑆 → ( ⊥ ‘( ⊥ ‘𝑠)) = ( ⊥ ‘( ⊥ ‘𝑆))) | |
| 10 | 8, 9 | eqeq12d 2745 | . . 3 ⊢ (𝑠 = 𝑆 → (𝑠 = ( ⊥ ‘( ⊥ ‘𝑠)) ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
| 11 | 7, 10 | elab3 3653 | . 2 ⊢ (𝑆 ∈ {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))} ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆))) |
| 12 | 4, 11 | bitrdi 287 | 1 ⊢ (𝑊 ∈ 𝑋 → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3447 ‘cfv 6511 ocvcocv 21569 ClSubSpccss 21570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-ocv 21572 df-css 21573 |
| This theorem is referenced by: cssi 21593 iscss2 21595 obslbs 21639 hlhillcs 41952 |
| Copyright terms: Public domain | W3C validator |