MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscss Structured version   Visualization version   GIF version

Theorem iscss 21724
Description: The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssval.o = (ocv‘𝑊)
cssval.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
iscss (𝑊𝑋 → (𝑆𝐶𝑆 = ( ‘( 𝑆))))

Proof of Theorem iscss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 cssval.o . . . 4 = (ocv‘𝑊)
2 cssval.c . . . 4 𝐶 = (ClSubSp‘𝑊)
31, 2cssval 21723 . . 3 (𝑊𝑋𝐶 = {𝑠𝑠 = ( ‘( 𝑠))})
43eleq2d 2830 . 2 (𝑊𝑋 → (𝑆𝐶𝑆 ∈ {𝑠𝑠 = ( ‘( 𝑠))}))
5 id 22 . . . 4 (𝑆 = ( ‘( 𝑆)) → 𝑆 = ( ‘( 𝑆)))
6 fvex 6933 . . . 4 ( ‘( 𝑆)) ∈ V
75, 6eqeltrdi 2852 . . 3 (𝑆 = ( ‘( 𝑆)) → 𝑆 ∈ V)
8 id 22 . . . 4 (𝑠 = 𝑆𝑠 = 𝑆)
9 2fveq3 6925 . . . 4 (𝑠 = 𝑆 → ( ‘( 𝑠)) = ( ‘( 𝑆)))
108, 9eqeq12d 2756 . . 3 (𝑠 = 𝑆 → (𝑠 = ( ‘( 𝑠)) ↔ 𝑆 = ( ‘( 𝑆))))
117, 10elab3 3702 . 2 (𝑆 ∈ {𝑠𝑠 = ( ‘( 𝑠))} ↔ 𝑆 = ( ‘( 𝑆)))
124, 11bitrdi 287 1 (𝑊𝑋 → (𝑆𝐶𝑆 = ( ‘( 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  cfv 6573  ocvcocv 21701  ClSubSpccss 21702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-ocv 21704  df-css 21705
This theorem is referenced by:  cssi  21725  iscss2  21727  obslbs  21773  hlhillcs  41919
  Copyright terms: Public domain W3C validator