Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islp | Structured version Visualization version GIF version |
Description: The predicate "the class 𝑃 is a limit point of 𝑆". (Contributed by NM, 10-Feb-2007.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
islp | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | lpval 22290 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
3 | 2 | eleq2d 2824 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})) |
4 | id 22 | . . 3 ⊢ (𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})) → 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))) | |
5 | id 22 | . . . 4 ⊢ (𝑥 = 𝑃 → 𝑥 = 𝑃) | |
6 | sneq 4571 | . . . . . 6 ⊢ (𝑥 = 𝑃 → {𝑥} = {𝑃}) | |
7 | 6 | difeq2d 4057 | . . . . 5 ⊢ (𝑥 = 𝑃 → (𝑆 ∖ {𝑥}) = (𝑆 ∖ {𝑃})) |
8 | 7 | fveq2d 6778 | . . . 4 ⊢ (𝑥 = 𝑃 → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))) |
9 | 5, 8 | eleq12d 2833 | . . 3 ⊢ (𝑥 = 𝑃 → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))) |
10 | 4, 9 | elab3 3617 | . 2 ⊢ (𝑃 ∈ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))) |
11 | 3, 10 | bitrdi 287 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 clsccl 22169 limPtclp 22285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-top 22043 df-cld 22170 df-cls 22172 df-lp 22287 |
This theorem is referenced by: lpdifsn 22294 lpss3 22295 islp2 22296 islp3 22297 maxlp 22298 restlp 22334 lpcls 22515 limcnlp 25042 limcflflem 25044 |
Copyright terms: Public domain | W3C validator |