| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islp | Structured version Visualization version GIF version | ||
| Description: The predicate "the class 𝑃 is a limit point of 𝑆". (Contributed by NM, 10-Feb-2007.) |
| Ref | Expression |
|---|---|
| lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| islp | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | lpval 23055 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
| 3 | 2 | eleq2d 2819 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})) |
| 4 | id 22 | . . 3 ⊢ (𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})) → 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))) | |
| 5 | id 22 | . . . 4 ⊢ (𝑥 = 𝑃 → 𝑥 = 𝑃) | |
| 6 | sneq 4585 | . . . . . 6 ⊢ (𝑥 = 𝑃 → {𝑥} = {𝑃}) | |
| 7 | 6 | difeq2d 4075 | . . . . 5 ⊢ (𝑥 = 𝑃 → (𝑆 ∖ {𝑥}) = (𝑆 ∖ {𝑃})) |
| 8 | 7 | fveq2d 6832 | . . . 4 ⊢ (𝑥 = 𝑃 → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))) |
| 9 | 5, 8 | eleq12d 2827 | . . 3 ⊢ (𝑥 = 𝑃 → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))) |
| 10 | 4, 9 | elab3 3638 | . 2 ⊢ (𝑃 ∈ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))) |
| 11 | 3, 10 | bitrdi 287 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ∖ cdif 3895 ⊆ wss 3898 {csn 4575 ∪ cuni 4858 ‘cfv 6486 Topctop 22809 clsccl 22934 limPtclp 23050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-top 22810 df-cld 22935 df-cls 22937 df-lp 23052 |
| This theorem is referenced by: lpdifsn 23059 lpss3 23060 islp2 23061 islp3 23062 maxlp 23063 restlp 23099 lpcls 23280 limcnlp 25807 limcflflem 25809 |
| Copyright terms: Public domain | W3C validator |