MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islp Structured version   Visualization version   GIF version

Theorem islp 22651
Description: The predicate "the class 𝑃 is a limit point of 𝑆". (Contributed by NM, 10-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
islp ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘†) ↔ 𝑃 ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃}))))

Proof of Theorem islp
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = βˆͺ 𝐽
21lpval 22650 . . 3 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((limPtβ€˜π½)β€˜π‘†) = {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯}))})
32eleq2d 2819 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘†) ↔ 𝑃 ∈ {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯}))}))
4 id 22 . . 3 (𝑃 ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃})) β†’ 𝑃 ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃})))
5 id 22 . . . 4 (π‘₯ = 𝑃 β†’ π‘₯ = 𝑃)
6 sneq 4638 . . . . . 6 (π‘₯ = 𝑃 β†’ {π‘₯} = {𝑃})
76difeq2d 4122 . . . . 5 (π‘₯ = 𝑃 β†’ (𝑆 βˆ– {π‘₯}) = (𝑆 βˆ– {𝑃}))
87fveq2d 6895 . . . 4 (π‘₯ = 𝑃 β†’ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯})) = ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃})))
95, 8eleq12d 2827 . . 3 (π‘₯ = 𝑃 β†’ (π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯})) ↔ 𝑃 ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃}))))
104, 9elab3 3676 . 2 (𝑃 ∈ {π‘₯ ∣ π‘₯ ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {π‘₯}))} ↔ 𝑃 ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃})))
113, 10bitrdi 286 1 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (𝑃 ∈ ((limPtβ€˜π½)β€˜π‘†) ↔ 𝑃 ∈ ((clsβ€˜π½)β€˜(𝑆 βˆ– {𝑃}))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709   βˆ– cdif 3945   βŠ† wss 3948  {csn 4628  βˆͺ cuni 4908  β€˜cfv 6543  Topctop 22402  clsccl 22529  limPtclp 22645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22403  df-cld 22530  df-cls 22532  df-lp 22647
This theorem is referenced by:  lpdifsn  22654  lpss3  22655  islp2  22656  islp3  22657  maxlp  22658  restlp  22694  lpcls  22875  limcnlp  25402  limcflflem  25404
  Copyright terms: Public domain W3C validator