![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islp | Structured version Visualization version GIF version |
Description: The predicate "the class 𝑃 is a limit point of 𝑆". (Contributed by NM, 10-Feb-2007.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
islp | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | lpval 21314 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) |
3 | 2 | eleq2d 2892 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})) |
4 | elex 3429 | . . 3 ⊢ (𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})) → 𝑃 ∈ V) | |
5 | id 22 | . . . 4 ⊢ (𝑥 = 𝑃 → 𝑥 = 𝑃) | |
6 | sneq 4407 | . . . . . 6 ⊢ (𝑥 = 𝑃 → {𝑥} = {𝑃}) | |
7 | 6 | difeq2d 3955 | . . . . 5 ⊢ (𝑥 = 𝑃 → (𝑆 ∖ {𝑥}) = (𝑆 ∖ {𝑃})) |
8 | 7 | fveq2d 6437 | . . . 4 ⊢ (𝑥 = 𝑃 → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))) |
9 | 5, 8 | eleq12d 2900 | . . 3 ⊢ (𝑥 = 𝑃 → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))) |
10 | 4, 9 | elab3 3579 | . 2 ⊢ (𝑃 ∈ {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))) |
11 | 3, 10 | syl6bb 279 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 {cab 2811 ∖ cdif 3795 ⊆ wss 3798 {csn 4397 ∪ cuni 4658 ‘cfv 6123 Topctop 21068 clsccl 21193 limPtclp 21309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-top 21069 df-cld 21194 df-cls 21196 df-lp 21311 |
This theorem is referenced by: lpdifsn 21318 lpss3 21319 islp2 21320 islp3 21321 maxlp 21322 restlp 21358 lpcls 21539 limcnlp 24041 limcflflem 24043 |
Copyright terms: Public domain | W3C validator |