MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islp Structured version   Visualization version   GIF version

Theorem islp 23169
Description: The predicate "the class 𝑃 is a limit point of 𝑆". (Contributed by NM, 10-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
islp ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))

Proof of Theorem islp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = 𝐽
21lpval 23168 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
32eleq2d 2830 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}))
4 id 22 . . 3 (𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})) → 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))
5 id 22 . . . 4 (𝑥 = 𝑃𝑥 = 𝑃)
6 sneq 4658 . . . . . 6 (𝑥 = 𝑃 → {𝑥} = {𝑃})
76difeq2d 4149 . . . . 5 (𝑥 = 𝑃 → (𝑆 ∖ {𝑥}) = (𝑆 ∖ {𝑃}))
87fveq2d 6924 . . . 4 (𝑥 = 𝑃 → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))
95, 8eleq12d 2838 . . 3 (𝑥 = 𝑃 → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
104, 9elab3 3702 . 2 (𝑃 ∈ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))
113, 10bitrdi 287 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  cdif 3973  wss 3976  {csn 4648   cuni 4931  cfv 6573  Topctop 22920  clsccl 23047  limPtclp 23163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-cld 23048  df-cls 23050  df-lp 23165
This theorem is referenced by:  lpdifsn  23172  lpss3  23173  islp2  23174  islp3  23175  maxlp  23176  restlp  23212  lpcls  23393  limcnlp  25933  limcflflem  25935
  Copyright terms: Public domain W3C validator