MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islp Structured version   Visualization version   GIF version

Theorem islp 23027
Description: The predicate "the class 𝑃 is a limit point of 𝑆". (Contributed by NM, 10-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
islp ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))

Proof of Theorem islp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . 4 𝑋 = 𝐽
21lpval 23026 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
32eleq2d 2814 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}))
4 id 22 . . 3 (𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})) → 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))
5 id 22 . . . 4 (𝑥 = 𝑃𝑥 = 𝑃)
6 sneq 4599 . . . . . 6 (𝑥 = 𝑃 → {𝑥} = {𝑃})
76difeq2d 4089 . . . . 5 (𝑥 = 𝑃 → (𝑆 ∖ {𝑥}) = (𝑆 ∖ {𝑃}))
87fveq2d 6862 . . . 4 (𝑥 = 𝑃 → ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))
95, 8eleq12d 2822 . . 3 (𝑥 = 𝑃 → (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
104, 9elab3 3653 . 2 (𝑃 ∈ {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))} ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))
113, 10bitrdi 287 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  cdif 3911  wss 3914  {csn 4589   cuni 4871  cfv 6511  Topctop 22780  clsccl 22905  limPtclp 23021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-top 22781  df-cld 22906  df-cls 22908  df-lp 23023
This theorem is referenced by:  lpdifsn  23030  lpss3  23031  islp2  23032  islp3  23033  maxlp  23034  restlp  23070  lpcls  23251  limcnlp  25779  limcflflem  25781
  Copyright terms: Public domain W3C validator