![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovelrn | Structured version Visualization version GIF version |
Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
Ref | Expression |
---|---|
ovelrn | ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrnov 7623 | . . 3 ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)}) | |
2 | 1 | eleq2d 2830 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ 𝐶 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)})) |
3 | ovex 7481 | . . . . . 6 ⊢ (𝑥𝐹𝑦) ∈ V | |
4 | eleq1 2832 | . . . . . 6 ⊢ (𝐶 = (𝑥𝐹𝑦) → (𝐶 ∈ V ↔ (𝑥𝐹𝑦) ∈ V)) | |
5 | 3, 4 | mpbiri 258 | . . . . 5 ⊢ (𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
6 | 5 | rexlimivw 3157 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
7 | 6 | rexlimivw 3157 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
8 | eqeq1 2744 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧 = (𝑥𝐹𝑦) ↔ 𝐶 = (𝑥𝐹𝑦))) | |
9 | 8 | 2rexbidv 3228 | . . 3 ⊢ (𝑧 = 𝐶 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
10 | 7, 9 | elab3 3702 | . 2 ⊢ (𝐶 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦)) |
11 | 2, 10 | bitrdi 287 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 Vcvv 3488 × cxp 5698 ran crn 5701 Fn wfn 6568 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-ov 7451 |
This theorem is referenced by: efgredlem 19789 efgcpbllemb 19797 gsumval3 19949 lecldbas 23248 blrnps 24439 blrn 24440 qdensere 24811 tgioo 24837 xrge0tsms 24875 ioorf 25627 ioorinv 25630 ioorcl 25631 dyaddisj 25650 dyadmax 25652 mbfid 25689 ismbfd 25693 hhssnv 31296 xrge0tsmsd 33041 iccllysconn 35218 rellysconn 35219 icoreelrnab 37320 relowlssretop 37329 relowlpssretop 37330 islptre 45540 |
Copyright terms: Public domain | W3C validator |