MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovelrn Structured version   Visualization version   GIF version

Theorem ovelrn 7324
Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
ovelrn (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ovelrn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fnrnov 7321 . . 3 (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)})
21eleq2d 2898 . 2 (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹𝐶 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)}))
3 ovex 7189 . . . . . 6 (𝑥𝐹𝑦) ∈ V
4 eleq1 2900 . . . . . 6 (𝐶 = (𝑥𝐹𝑦) → (𝐶 ∈ V ↔ (𝑥𝐹𝑦) ∈ V))
53, 4mpbiri 260 . . . . 5 (𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V)
65rexlimivw 3282 . . . 4 (∃𝑦𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V)
76rexlimivw 3282 . . 3 (∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V)
8 eqeq1 2825 . . . 4 (𝑧 = 𝐶 → (𝑧 = (𝑥𝐹𝑦) ↔ 𝐶 = (𝑥𝐹𝑦)))
982rexbidv 3300 . . 3 (𝑧 = 𝐶 → (∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦)))
107, 9elab3 3674 . 2 (𝐶 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)} ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦))
112, 10syl6bb 289 1 (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  {cab 2799  wrex 3139  Vcvv 3494   × cxp 5553  ran crn 5556   Fn wfn 6350  (class class class)co 7156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fn 6358  df-fv 6363  df-ov 7159
This theorem is referenced by:  efgredlem  18873  efgcpbllemb  18881  gsumval3  19027  lecldbas  21827  blrnps  23018  blrn  23019  qdensere  23378  tgioo  23404  xrge0tsms  23442  ioorf  24174  ioorinv  24177  ioorcl  24178  dyaddisj  24197  dyadmax  24199  mbfid  24236  ismbfd  24240  hhssnv  29041  xrge0tsmsd  30692  iccllysconn  32497  rellysconn  32498  icoreelrnab  34638  relowlssretop  34647  relowlpssretop  34648  islptre  41920
  Copyright terms: Public domain W3C validator