| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovelrn | Structured version Visualization version GIF version | ||
| Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
| Ref | Expression |
|---|---|
| ovelrn | ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrnov 7606 | . . 3 ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)}) | |
| 2 | 1 | eleq2d 2827 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ 𝐶 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)})) |
| 3 | ovex 7464 | . . . . . 6 ⊢ (𝑥𝐹𝑦) ∈ V | |
| 4 | eleq1 2829 | . . . . . 6 ⊢ (𝐶 = (𝑥𝐹𝑦) → (𝐶 ∈ V ↔ (𝑥𝐹𝑦) ∈ V)) | |
| 5 | 3, 4 | mpbiri 258 | . . . . 5 ⊢ (𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
| 6 | 5 | rexlimivw 3151 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
| 7 | 6 | rexlimivw 3151 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
| 8 | eqeq1 2741 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧 = (𝑥𝐹𝑦) ↔ 𝐶 = (𝑥𝐹𝑦))) | |
| 9 | 8 | 2rexbidv 3222 | . . 3 ⊢ (𝑧 = 𝐶 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
| 10 | 7, 9 | elab3 3686 | . 2 ⊢ (𝐶 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦)) |
| 11 | 2, 10 | bitrdi 287 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {cab 2714 ∃wrex 3070 Vcvv 3480 × cxp 5683 ran crn 5686 Fn wfn 6556 (class class class)co 7431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 df-ov 7434 |
| This theorem is referenced by: efgredlem 19765 efgcpbllemb 19773 gsumval3 19925 lecldbas 23227 blrnps 24418 blrn 24419 qdensere 24790 tgioo 24817 xrge0tsms 24856 ioorf 25608 ioorinv 25611 ioorcl 25612 dyaddisj 25631 dyadmax 25633 mbfid 25670 ismbfd 25674 hhssnv 31283 xrge0tsmsd 33065 iccllysconn 35255 rellysconn 35256 icoreelrnab 37355 relowlssretop 37364 relowlpssretop 37365 islptre 45634 |
| Copyright terms: Public domain | W3C validator |