Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovelrn | Structured version Visualization version GIF version |
Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
Ref | Expression |
---|---|
ovelrn | ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrnov 7423 | . . 3 ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)}) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ 𝐶 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)})) |
3 | ovex 7288 | . . . . . 6 ⊢ (𝑥𝐹𝑦) ∈ V | |
4 | eleq1 2826 | . . . . . 6 ⊢ (𝐶 = (𝑥𝐹𝑦) → (𝐶 ∈ V ↔ (𝑥𝐹𝑦) ∈ V)) | |
5 | 3, 4 | mpbiri 257 | . . . . 5 ⊢ (𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
6 | 5 | rexlimivw 3210 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
7 | 6 | rexlimivw 3210 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
8 | eqeq1 2742 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧 = (𝑥𝐹𝑦) ↔ 𝐶 = (𝑥𝐹𝑦))) | |
9 | 8 | 2rexbidv 3228 | . . 3 ⊢ (𝑧 = 𝐶 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
10 | 7, 9 | elab3 3610 | . 2 ⊢ (𝐶 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦)) |
11 | 2, 10 | bitrdi 286 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 Vcvv 3422 × cxp 5578 ran crn 5581 Fn wfn 6413 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-ov 7258 |
This theorem is referenced by: efgredlem 19268 efgcpbllemb 19276 gsumval3 19423 lecldbas 22278 blrnps 23469 blrn 23470 qdensere 23839 tgioo 23865 xrge0tsms 23903 ioorf 24642 ioorinv 24645 ioorcl 24646 dyaddisj 24665 dyadmax 24667 mbfid 24704 ismbfd 24708 hhssnv 29527 xrge0tsmsd 31219 iccllysconn 33112 rellysconn 33113 icoreelrnab 35452 relowlssretop 35461 relowlpssretop 35462 islptre 43050 |
Copyright terms: Public domain | W3C validator |