MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovelrn Structured version   Visualization version   GIF version

Theorem ovelrn 7304
Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
ovelrn (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ovelrn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fnrnov 7301 . . 3 (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)})
21eleq2d 2875 . 2 (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹𝐶 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)}))
3 ovex 7168 . . . . . 6 (𝑥𝐹𝑦) ∈ V
4 eleq1 2877 . . . . . 6 (𝐶 = (𝑥𝐹𝑦) → (𝐶 ∈ V ↔ (𝑥𝐹𝑦) ∈ V))
53, 4mpbiri 261 . . . . 5 (𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V)
65rexlimivw 3241 . . . 4 (∃𝑦𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V)
76rexlimivw 3241 . . 3 (∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V)
8 eqeq1 2802 . . . 4 (𝑧 = 𝐶 → (𝑧 = (𝑥𝐹𝑦) ↔ 𝐶 = (𝑥𝐹𝑦)))
982rexbidv 3259 . . 3 (𝑧 = 𝐶 → (∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦)))
107, 9elab3 3622 . 2 (𝐶 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)} ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦))
112, 10syl6bb 290 1 (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  {cab 2776  wrex 3107  Vcvv 3441   × cxp 5517  ran crn 5520   Fn wfn 6319  (class class class)co 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332  df-ov 7138
This theorem is referenced by:  efgredlem  18865  efgcpbllemb  18873  gsumval3  19020  lecldbas  21824  blrnps  23015  blrn  23016  qdensere  23375  tgioo  23401  xrge0tsms  23439  ioorf  24177  ioorinv  24180  ioorcl  24181  dyaddisj  24200  dyadmax  24202  mbfid  24239  ismbfd  24243  hhssnv  29047  xrge0tsmsd  30742  iccllysconn  32610  rellysconn  32611  icoreelrnab  34771  relowlssretop  34780  relowlpssretop  34781  islptre  42261
  Copyright terms: Public domain W3C validator