MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovelrn Structured version   Visualization version   GIF version

Theorem ovelrn 7528
Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
ovelrn (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ovelrn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fnrnov 7525 . . 3 (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)})
21eleq2d 2817 . 2 (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹𝐶 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)}))
3 ovex 7385 . . . . . 6 (𝑥𝐹𝑦) ∈ V
4 eleq1 2819 . . . . . 6 (𝐶 = (𝑥𝐹𝑦) → (𝐶 ∈ V ↔ (𝑥𝐹𝑦) ∈ V))
53, 4mpbiri 258 . . . . 5 (𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V)
65rexlimivw 3129 . . . 4 (∃𝑦𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V)
76rexlimivw 3129 . . 3 (∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V)
8 eqeq1 2735 . . . 4 (𝑧 = 𝐶 → (𝑧 = (𝑥𝐹𝑦) ↔ 𝐶 = (𝑥𝐹𝑦)))
982rexbidv 3197 . . 3 (𝑧 = 𝐶 → (∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦)))
107, 9elab3 3637 . 2 (𝐶 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)} ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦))
112, 10bitrdi 287 1 (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436   × cxp 5617  ran crn 5620   Fn wfn 6482  (class class class)co 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6443  df-fun 6489  df-fn 6490  df-fv 6495  df-ov 7355
This theorem is referenced by:  efgredlem  19665  efgcpbllemb  19673  gsumval3  19825  lecldbas  23140  blrnps  24329  blrn  24330  qdensere  24690  tgioo  24717  xrge0tsms  24756  ioorf  25507  ioorinv  25510  ioorcl  25511  dyaddisj  25530  dyadmax  25532  mbfid  25569  ismbfd  25573  hhssnv  31251  xrge0tsmsd  33049  iccllysconn  35301  rellysconn  35302  icoreelrnab  37405  relowlssretop  37414  relowlpssretop  37415  islptre  45724
  Copyright terms: Public domain W3C validator