| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovelrn | Structured version Visualization version GIF version | ||
| Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
| Ref | Expression |
|---|---|
| ovelrn | ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrnov 7525 | . . 3 ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)}) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ 𝐶 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)})) |
| 3 | ovex 7385 | . . . . . 6 ⊢ (𝑥𝐹𝑦) ∈ V | |
| 4 | eleq1 2819 | . . . . . 6 ⊢ (𝐶 = (𝑥𝐹𝑦) → (𝐶 ∈ V ↔ (𝑥𝐹𝑦) ∈ V)) | |
| 5 | 3, 4 | mpbiri 258 | . . . . 5 ⊢ (𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
| 6 | 5 | rexlimivw 3129 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
| 7 | 6 | rexlimivw 3129 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
| 8 | eqeq1 2735 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧 = (𝑥𝐹𝑦) ↔ 𝐶 = (𝑥𝐹𝑦))) | |
| 9 | 8 | 2rexbidv 3197 | . . 3 ⊢ (𝑧 = 𝐶 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
| 10 | 7, 9 | elab3 3637 | . 2 ⊢ (𝐶 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦)) |
| 11 | 2, 10 | bitrdi 287 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 Vcvv 3436 × cxp 5617 ran crn 5620 Fn wfn 6482 (class class class)co 7352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6443 df-fun 6489 df-fn 6490 df-fv 6495 df-ov 7355 |
| This theorem is referenced by: efgredlem 19665 efgcpbllemb 19673 gsumval3 19825 lecldbas 23140 blrnps 24329 blrn 24330 qdensere 24690 tgioo 24717 xrge0tsms 24756 ioorf 25507 ioorinv 25510 ioorcl 25511 dyaddisj 25530 dyadmax 25532 mbfid 25569 ismbfd 25573 hhssnv 31251 xrge0tsmsd 33049 iccllysconn 35301 rellysconn 35302 icoreelrnab 37405 relowlssretop 37414 relowlpssretop 37415 islptre 45724 |
| Copyright terms: Public domain | W3C validator |