MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovelrn Structured version   Visualization version   GIF version

Theorem ovelrn 7565
Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
ovelrn (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ovelrn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fnrnov 7562 . . 3 (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)})
21eleq2d 2814 . 2 (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹𝐶 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)}))
3 ovex 7420 . . . . . 6 (𝑥𝐹𝑦) ∈ V
4 eleq1 2816 . . . . . 6 (𝐶 = (𝑥𝐹𝑦) → (𝐶 ∈ V ↔ (𝑥𝐹𝑦) ∈ V))
53, 4mpbiri 258 . . . . 5 (𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V)
65rexlimivw 3130 . . . 4 (∃𝑦𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V)
76rexlimivw 3130 . . 3 (∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V)
8 eqeq1 2733 . . . 4 (𝑧 = 𝐶 → (𝑧 = (𝑥𝐹𝑦) ↔ 𝐶 = (𝑥𝐹𝑦)))
982rexbidv 3202 . . 3 (𝑧 = 𝐶 → (∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦)))
107, 9elab3 3653 . 2 (𝐶 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)} ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦))
112, 10bitrdi 287 1 (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447   × cxp 5636  ran crn 5639   Fn wfn 6506  (class class class)co 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-ov 7390
This theorem is referenced by:  efgredlem  19677  efgcpbllemb  19685  gsumval3  19837  lecldbas  23106  blrnps  24296  blrn  24297  qdensere  24657  tgioo  24684  xrge0tsms  24723  ioorf  25474  ioorinv  25477  ioorcl  25478  dyaddisj  25497  dyadmax  25499  mbfid  25536  ismbfd  25540  hhssnv  31193  xrge0tsmsd  33002  iccllysconn  35237  rellysconn  35238  icoreelrnab  37342  relowlssretop  37351  relowlpssretop  37352  islptre  45617
  Copyright terms: Public domain W3C validator