| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovelrn | Structured version Visualization version GIF version | ||
| Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
| Ref | Expression |
|---|---|
| ovelrn | ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrnov 7542 | . . 3 ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)}) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ 𝐶 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)})) |
| 3 | ovex 7402 | . . . . . 6 ⊢ (𝑥𝐹𝑦) ∈ V | |
| 4 | eleq1 2816 | . . . . . 6 ⊢ (𝐶 = (𝑥𝐹𝑦) → (𝐶 ∈ V ↔ (𝑥𝐹𝑦) ∈ V)) | |
| 5 | 3, 4 | mpbiri 258 | . . . . 5 ⊢ (𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
| 6 | 5 | rexlimivw 3130 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
| 7 | 6 | rexlimivw 3130 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦) → 𝐶 ∈ V) |
| 8 | eqeq1 2733 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧 = (𝑥𝐹𝑦) ↔ 𝐶 = (𝑥𝐹𝑦))) | |
| 9 | 8 | 2rexbidv 3200 | . . 3 ⊢ (𝑧 = 𝐶 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
| 10 | 7, 9 | elab3 3650 | . 2 ⊢ (𝐶 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦)) |
| 11 | 2, 10 | bitrdi 287 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥𝐹𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3444 × cxp 5629 ran crn 5632 Fn wfn 6494 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: efgredlem 19662 efgcpbllemb 19670 gsumval3 19822 lecldbas 23140 blrnps 24330 blrn 24331 qdensere 24691 tgioo 24718 xrge0tsms 24757 ioorf 25508 ioorinv 25511 ioorcl 25512 dyaddisj 25531 dyadmax 25533 mbfid 25570 ismbfd 25574 hhssnv 31244 xrge0tsmsd 33046 iccllysconn 35231 rellysconn 35232 icoreelrnab 37336 relowlssretop 37345 relowlpssretop 37346 islptre 45611 |
| Copyright terms: Public domain | W3C validator |