| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm54.43lem | Structured version Visualization version GIF version | ||
| Description: In Theorem *54.43 of [WhiteheadRussell] p. 360, the number 1 is defined as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9861), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}. Here we show that this is equivalent to 𝐴 ≈ 1o so that we can use the latter more convenient notation in pm54.43 9894. (Contributed by NM, 4-Nov-2013.) |
| Ref | Expression |
|---|---|
| pm54.43lem | ⊢ (𝐴 ≈ 1o ↔ 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carden2b 9860 | . . . 4 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o)) | |
| 2 | 1onn 8555 | . . . . 5 ⊢ 1o ∈ ω | |
| 3 | cardnn 9856 | . . . . 5 ⊢ (1o ∈ ω → (card‘1o) = 1o) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (card‘1o) = 1o |
| 5 | 1, 4 | eqtrdi 2782 | . . 3 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = 1o) |
| 6 | 4 | eqeq2i 2744 | . . . . 5 ⊢ ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o) |
| 7 | 6 | biimpri 228 | . . . 4 ⊢ ((card‘𝐴) = 1o → (card‘𝐴) = (card‘1o)) |
| 8 | 1n0 8403 | . . . . . . . 8 ⊢ 1o ≠ ∅ | |
| 9 | 8 | neii 2930 | . . . . . . 7 ⊢ ¬ 1o = ∅ |
| 10 | eqeq1 2735 | . . . . . . 7 ⊢ ((card‘𝐴) = 1o → ((card‘𝐴) = ∅ ↔ 1o = ∅)) | |
| 11 | 9, 10 | mtbiri 327 | . . . . . 6 ⊢ ((card‘𝐴) = 1o → ¬ (card‘𝐴) = ∅) |
| 12 | ndmfv 6854 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
| 13 | 11, 12 | nsyl2 141 | . . . . 5 ⊢ ((card‘𝐴) = 1o → 𝐴 ∈ dom card) |
| 14 | 1on 8397 | . . . . . 6 ⊢ 1o ∈ On | |
| 15 | onenon 9842 | . . . . . 6 ⊢ (1o ∈ On → 1o ∈ dom card) | |
| 16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ 1o ∈ dom card |
| 17 | carden2 9880 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o)) | |
| 18 | 13, 16, 17 | sylancl 586 | . . . 4 ⊢ ((card‘𝐴) = 1o → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o)) |
| 19 | 7, 18 | mpbid 232 | . . 3 ⊢ ((card‘𝐴) = 1o → 𝐴 ≈ 1o) |
| 20 | 5, 19 | impbii 209 | . 2 ⊢ (𝐴 ≈ 1o ↔ (card‘𝐴) = 1o) |
| 21 | fveqeq2 6831 | . . 3 ⊢ (𝑥 = 𝐴 → ((card‘𝑥) = 1o ↔ (card‘𝐴) = 1o)) | |
| 22 | 13, 21 | elab3 3642 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o} ↔ (card‘𝐴) = 1o) |
| 23 | 20, 22 | bitr4i 278 | 1 ⊢ (𝐴 ≈ 1o ↔ 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 ∅c0 4283 class class class wbr 5091 dom cdm 5616 Oncon0 6306 ‘cfv 6481 ωcom 7796 1oc1o 8378 ≈ cen 8866 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |