MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm54.43lem Structured version   Visualization version   GIF version

Theorem pm54.43lem 9995
Description: In Theorem *54.43 of [WhiteheadRussell] p. 360, the number 1 is defined as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9963), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {π‘₯ ∣ (cardβ€˜π‘₯) = 1o}. Here we show that this is equivalent to 𝐴 β‰ˆ 1o so that we can use the latter more convenient notation in pm54.43 9996. (Contributed by NM, 4-Nov-2013.)
Assertion
Ref Expression
pm54.43lem (𝐴 β‰ˆ 1o ↔ 𝐴 ∈ {π‘₯ ∣ (cardβ€˜π‘₯) = 1o})
Distinct variable group:   π‘₯,𝐴

Proof of Theorem pm54.43lem
StepHypRef Expression
1 carden2b 9962 . . . 4 (𝐴 β‰ˆ 1o β†’ (cardβ€˜π΄) = (cardβ€˜1o))
2 1onn 8639 . . . . 5 1o ∈ Ο‰
3 cardnn 9958 . . . . 5 (1o ∈ Ο‰ β†’ (cardβ€˜1o) = 1o)
42, 3ax-mp 5 . . . 4 (cardβ€˜1o) = 1o
51, 4eqtrdi 2789 . . 3 (𝐴 β‰ˆ 1o β†’ (cardβ€˜π΄) = 1o)
64eqeq2i 2746 . . . . 5 ((cardβ€˜π΄) = (cardβ€˜1o) ↔ (cardβ€˜π΄) = 1o)
76biimpri 227 . . . 4 ((cardβ€˜π΄) = 1o β†’ (cardβ€˜π΄) = (cardβ€˜1o))
8 1n0 8488 . . . . . . . 8 1o β‰  βˆ…
98neii 2943 . . . . . . 7 Β¬ 1o = βˆ…
10 eqeq1 2737 . . . . . . 7 ((cardβ€˜π΄) = 1o β†’ ((cardβ€˜π΄) = βˆ… ↔ 1o = βˆ…))
119, 10mtbiri 327 . . . . . 6 ((cardβ€˜π΄) = 1o β†’ Β¬ (cardβ€˜π΄) = βˆ…)
12 ndmfv 6927 . . . . . 6 (Β¬ 𝐴 ∈ dom card β†’ (cardβ€˜π΄) = βˆ…)
1311, 12nsyl2 141 . . . . 5 ((cardβ€˜π΄) = 1o β†’ 𝐴 ∈ dom card)
14 1on 8478 . . . . . 6 1o ∈ On
15 onenon 9944 . . . . . 6 (1o ∈ On β†’ 1o ∈ dom card)
1614, 15ax-mp 5 . . . . 5 1o ∈ dom card
17 carden2 9982 . . . . 5 ((𝐴 ∈ dom card ∧ 1o ∈ dom card) β†’ ((cardβ€˜π΄) = (cardβ€˜1o) ↔ 𝐴 β‰ˆ 1o))
1813, 16, 17sylancl 587 . . . 4 ((cardβ€˜π΄) = 1o β†’ ((cardβ€˜π΄) = (cardβ€˜1o) ↔ 𝐴 β‰ˆ 1o))
197, 18mpbid 231 . . 3 ((cardβ€˜π΄) = 1o β†’ 𝐴 β‰ˆ 1o)
205, 19impbii 208 . 2 (𝐴 β‰ˆ 1o ↔ (cardβ€˜π΄) = 1o)
21 fveqeq2 6901 . . 3 (π‘₯ = 𝐴 β†’ ((cardβ€˜π‘₯) = 1o ↔ (cardβ€˜π΄) = 1o))
2213, 21elab3 3677 . 2 (𝐴 ∈ {π‘₯ ∣ (cardβ€˜π‘₯) = 1o} ↔ (cardβ€˜π΄) = 1o)
2320, 22bitr4i 278 1 (𝐴 β‰ˆ 1o ↔ 𝐴 ∈ {π‘₯ ∣ (cardβ€˜π‘₯) = 1o})
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   = wceq 1542   ∈ wcel 2107  {cab 2710  βˆ…c0 4323   class class class wbr 5149  dom cdm 5677  Oncon0 6365  β€˜cfv 6544  Ο‰com 7855  1oc1o 8459   β‰ˆ cen 8936  cardccrd 9930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator