Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm54.43lem | Structured version Visualization version GIF version |
Description: In Theorem *54.43 of [WhiteheadRussell] p. 360, the number 1 is defined as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9430), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}. Here we show that this is equivalent to 𝐴 ≈ 1o so that we can use the latter more convenient notation in pm54.43 9463. (Contributed by NM, 4-Nov-2013.) |
Ref | Expression |
---|---|
pm54.43lem | ⊢ (𝐴 ≈ 1o ↔ 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carden2b 9429 | . . . 4 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o)) | |
2 | 1onn 8275 | . . . . 5 ⊢ 1o ∈ ω | |
3 | cardnn 9425 | . . . . 5 ⊢ (1o ∈ ω → (card‘1o) = 1o) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (card‘1o) = 1o |
5 | 1, 4 | eqtrdi 2809 | . . 3 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = 1o) |
6 | 4 | eqeq2i 2771 | . . . . 5 ⊢ ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o) |
7 | 6 | biimpri 231 | . . . 4 ⊢ ((card‘𝐴) = 1o → (card‘𝐴) = (card‘1o)) |
8 | 1n0 8129 | . . . . . . . 8 ⊢ 1o ≠ ∅ | |
9 | 8 | neii 2953 | . . . . . . 7 ⊢ ¬ 1o = ∅ |
10 | eqeq1 2762 | . . . . . . 7 ⊢ ((card‘𝐴) = 1o → ((card‘𝐴) = ∅ ↔ 1o = ∅)) | |
11 | 9, 10 | mtbiri 330 | . . . . . 6 ⊢ ((card‘𝐴) = 1o → ¬ (card‘𝐴) = ∅) |
12 | ndmfv 6688 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
13 | 11, 12 | nsyl2 143 | . . . . 5 ⊢ ((card‘𝐴) = 1o → 𝐴 ∈ dom card) |
14 | 1on 8119 | . . . . . 6 ⊢ 1o ∈ On | |
15 | onenon 9411 | . . . . . 6 ⊢ (1o ∈ On → 1o ∈ dom card) | |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ 1o ∈ dom card |
17 | carden2 9449 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o)) | |
18 | 13, 16, 17 | sylancl 589 | . . . 4 ⊢ ((card‘𝐴) = 1o → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o)) |
19 | 7, 18 | mpbid 235 | . . 3 ⊢ ((card‘𝐴) = 1o → 𝐴 ≈ 1o) |
20 | 5, 19 | impbii 212 | . 2 ⊢ (𝐴 ≈ 1o ↔ (card‘𝐴) = 1o) |
21 | fveqeq2 6667 | . . 3 ⊢ (𝑥 = 𝐴 → ((card‘𝑥) = 1o ↔ (card‘𝐴) = 1o)) | |
22 | 13, 21 | elab3 3595 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o} ↔ (card‘𝐴) = 1o) |
23 | 20, 22 | bitr4i 281 | 1 ⊢ (𝐴 ≈ 1o ↔ 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1538 ∈ wcel 2111 {cab 2735 ∅c0 4225 class class class wbr 5032 dom cdm 5524 Oncon0 6169 ‘cfv 6335 ωcom 7579 1oc1o 8105 ≈ cen 8524 cardccrd 9397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-om 7580 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |