Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm54.43lem | Structured version Visualization version GIF version |
Description: In Theorem *54.43 of [WhiteheadRussell] p. 360, the number 1 is defined as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9657), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}. Here we show that this is equivalent to 𝐴 ≈ 1o so that we can use the latter more convenient notation in pm54.43 9690. (Contributed by NM, 4-Nov-2013.) |
Ref | Expression |
---|---|
pm54.43lem | ⊢ (𝐴 ≈ 1o ↔ 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carden2b 9656 | . . . 4 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o)) | |
2 | 1onn 8432 | . . . . 5 ⊢ 1o ∈ ω | |
3 | cardnn 9652 | . . . . 5 ⊢ (1o ∈ ω → (card‘1o) = 1o) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (card‘1o) = 1o |
5 | 1, 4 | eqtrdi 2795 | . . 3 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = 1o) |
6 | 4 | eqeq2i 2751 | . . . . 5 ⊢ ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o) |
7 | 6 | biimpri 227 | . . . 4 ⊢ ((card‘𝐴) = 1o → (card‘𝐴) = (card‘1o)) |
8 | 1n0 8286 | . . . . . . . 8 ⊢ 1o ≠ ∅ | |
9 | 8 | neii 2944 | . . . . . . 7 ⊢ ¬ 1o = ∅ |
10 | eqeq1 2742 | . . . . . . 7 ⊢ ((card‘𝐴) = 1o → ((card‘𝐴) = ∅ ↔ 1o = ∅)) | |
11 | 9, 10 | mtbiri 326 | . . . . . 6 ⊢ ((card‘𝐴) = 1o → ¬ (card‘𝐴) = ∅) |
12 | ndmfv 6786 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
13 | 11, 12 | nsyl2 141 | . . . . 5 ⊢ ((card‘𝐴) = 1o → 𝐴 ∈ dom card) |
14 | 1on 8274 | . . . . . 6 ⊢ 1o ∈ On | |
15 | onenon 9638 | . . . . . 6 ⊢ (1o ∈ On → 1o ∈ dom card) | |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ 1o ∈ dom card |
17 | carden2 9676 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o)) | |
18 | 13, 16, 17 | sylancl 585 | . . . 4 ⊢ ((card‘𝐴) = 1o → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o)) |
19 | 7, 18 | mpbid 231 | . . 3 ⊢ ((card‘𝐴) = 1o → 𝐴 ≈ 1o) |
20 | 5, 19 | impbii 208 | . 2 ⊢ (𝐴 ≈ 1o ↔ (card‘𝐴) = 1o) |
21 | fveqeq2 6765 | . . 3 ⊢ (𝑥 = 𝐴 → ((card‘𝑥) = 1o ↔ (card‘𝐴) = 1o)) | |
22 | 13, 21 | elab3 3610 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o} ↔ (card‘𝐴) = 1o) |
23 | 20, 22 | bitr4i 277 | 1 ⊢ (𝐴 ≈ 1o ↔ 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 ∅c0 4253 class class class wbr 5070 dom cdm 5580 Oncon0 6251 ‘cfv 6418 ωcom 7687 1oc1o 8260 ≈ cen 8688 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |