MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm54.43lem Structured version   Visualization version   GIF version

Theorem pm54.43lem 9427
Description: In Theorem *54.43 of [WhiteheadRussell] p. 360, the number 1 is defined as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9396), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}. Here we show that this is equivalent to 𝐴 ≈ 1o so that we can use the latter more convenient notation in pm54.43 9428. (Contributed by NM, 4-Nov-2013.)
Assertion
Ref Expression
pm54.43lem (𝐴 ≈ 1o𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o})
Distinct variable group:   𝑥,𝐴

Proof of Theorem pm54.43lem
StepHypRef Expression
1 carden2b 9395 . . . 4 (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o))
2 1onn 8264 . . . . 5 1o ∈ ω
3 cardnn 9391 . . . . 5 (1o ∈ ω → (card‘1o) = 1o)
42, 3ax-mp 5 . . . 4 (card‘1o) = 1o
51, 4syl6eq 2872 . . 3 (𝐴 ≈ 1o → (card‘𝐴) = 1o)
64eqeq2i 2834 . . . . 5 ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o)
76biimpri 230 . . . 4 ((card‘𝐴) = 1o → (card‘𝐴) = (card‘1o))
8 1n0 8118 . . . . . . . 8 1o ≠ ∅
98neii 3018 . . . . . . 7 ¬ 1o = ∅
10 eqeq1 2825 . . . . . . 7 ((card‘𝐴) = 1o → ((card‘𝐴) = ∅ ↔ 1o = ∅))
119, 10mtbiri 329 . . . . . 6 ((card‘𝐴) = 1o → ¬ (card‘𝐴) = ∅)
12 ndmfv 6699 . . . . . 6 𝐴 ∈ dom card → (card‘𝐴) = ∅)
1311, 12nsyl2 143 . . . . 5 ((card‘𝐴) = 1o𝐴 ∈ dom card)
14 1on 8108 . . . . . 6 1o ∈ On
15 onenon 9377 . . . . . 6 (1o ∈ On → 1o ∈ dom card)
1614, 15ax-mp 5 . . . . 5 1o ∈ dom card
17 carden2 9415 . . . . 5 ((𝐴 ∈ dom card ∧ 1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
1813, 16, 17sylancl 588 . . . 4 ((card‘𝐴) = 1o → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
197, 18mpbid 234 . . 3 ((card‘𝐴) = 1o𝐴 ≈ 1o)
205, 19impbii 211 . 2 (𝐴 ≈ 1o ↔ (card‘𝐴) = 1o)
2113elexd 3514 . . 3 ((card‘𝐴) = 1o𝐴 ∈ V)
22 fveqeq2 6678 . . 3 (𝑥 = 𝐴 → ((card‘𝑥) = 1o ↔ (card‘𝐴) = 1o))
2321, 22elab3 3673 . 2 (𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o} ↔ (card‘𝐴) = 1o)
2420, 23bitr4i 280 1 (𝐴 ≈ 1o𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o})
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1533  wcel 2110  {cab 2799  c0 4290   class class class wbr 5065  dom cdm 5554  Oncon0 6190  cfv 6354  ωcom 7579  1oc1o 8094  cen 8505  cardccrd 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-om 7580  df-1o 8101  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator