MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm54.43lem Structured version   Visualization version   GIF version

Theorem pm54.43lem 9689
Description: In Theorem *54.43 of [WhiteheadRussell] p. 360, the number 1 is defined as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9657), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}. Here we show that this is equivalent to 𝐴 ≈ 1o so that we can use the latter more convenient notation in pm54.43 9690. (Contributed by NM, 4-Nov-2013.)
Assertion
Ref Expression
pm54.43lem (𝐴 ≈ 1o𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o})
Distinct variable group:   𝑥,𝐴

Proof of Theorem pm54.43lem
StepHypRef Expression
1 carden2b 9656 . . . 4 (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o))
2 1onn 8432 . . . . 5 1o ∈ ω
3 cardnn 9652 . . . . 5 (1o ∈ ω → (card‘1o) = 1o)
42, 3ax-mp 5 . . . 4 (card‘1o) = 1o
51, 4eqtrdi 2795 . . 3 (𝐴 ≈ 1o → (card‘𝐴) = 1o)
64eqeq2i 2751 . . . . 5 ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o)
76biimpri 227 . . . 4 ((card‘𝐴) = 1o → (card‘𝐴) = (card‘1o))
8 1n0 8286 . . . . . . . 8 1o ≠ ∅
98neii 2944 . . . . . . 7 ¬ 1o = ∅
10 eqeq1 2742 . . . . . . 7 ((card‘𝐴) = 1o → ((card‘𝐴) = ∅ ↔ 1o = ∅))
119, 10mtbiri 326 . . . . . 6 ((card‘𝐴) = 1o → ¬ (card‘𝐴) = ∅)
12 ndmfv 6786 . . . . . 6 𝐴 ∈ dom card → (card‘𝐴) = ∅)
1311, 12nsyl2 141 . . . . 5 ((card‘𝐴) = 1o𝐴 ∈ dom card)
14 1on 8274 . . . . . 6 1o ∈ On
15 onenon 9638 . . . . . 6 (1o ∈ On → 1o ∈ dom card)
1614, 15ax-mp 5 . . . . 5 1o ∈ dom card
17 carden2 9676 . . . . 5 ((𝐴 ∈ dom card ∧ 1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
1813, 16, 17sylancl 585 . . . 4 ((card‘𝐴) = 1o → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
197, 18mpbid 231 . . 3 ((card‘𝐴) = 1o𝐴 ≈ 1o)
205, 19impbii 208 . 2 (𝐴 ≈ 1o ↔ (card‘𝐴) = 1o)
21 fveqeq2 6765 . . 3 (𝑥 = 𝐴 → ((card‘𝑥) = 1o ↔ (card‘𝐴) = 1o))
2213, 21elab3 3610 . 2 (𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o} ↔ (card‘𝐴) = 1o)
2320, 22bitr4i 277 1 (𝐴 ≈ 1o𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  {cab 2715  c0 4253   class class class wbr 5070  dom cdm 5580  Oncon0 6251  cfv 6418  ωcom 7687  1oc1o 8260  cen 8688  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator