| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm54.43lem | Structured version Visualization version GIF version | ||
| Description: In Theorem *54.43 of [WhiteheadRussell] p. 360, the number 1 is defined as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9921), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}. Here we show that this is equivalent to 𝐴 ≈ 1o so that we can use the latter more convenient notation in pm54.43 9954. (Contributed by NM, 4-Nov-2013.) |
| Ref | Expression |
|---|---|
| pm54.43lem | ⊢ (𝐴 ≈ 1o ↔ 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carden2b 9920 | . . . 4 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o)) | |
| 2 | 1onn 8604 | . . . . 5 ⊢ 1o ∈ ω | |
| 3 | cardnn 9916 | . . . . 5 ⊢ (1o ∈ ω → (card‘1o) = 1o) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (card‘1o) = 1o |
| 5 | 1, 4 | eqtrdi 2780 | . . 3 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = 1o) |
| 6 | 4 | eqeq2i 2742 | . . . . 5 ⊢ ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o) |
| 7 | 6 | biimpri 228 | . . . 4 ⊢ ((card‘𝐴) = 1o → (card‘𝐴) = (card‘1o)) |
| 8 | 1n0 8452 | . . . . . . . 8 ⊢ 1o ≠ ∅ | |
| 9 | 8 | neii 2927 | . . . . . . 7 ⊢ ¬ 1o = ∅ |
| 10 | eqeq1 2733 | . . . . . . 7 ⊢ ((card‘𝐴) = 1o → ((card‘𝐴) = ∅ ↔ 1o = ∅)) | |
| 11 | 9, 10 | mtbiri 327 | . . . . . 6 ⊢ ((card‘𝐴) = 1o → ¬ (card‘𝐴) = ∅) |
| 12 | ndmfv 6893 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
| 13 | 11, 12 | nsyl2 141 | . . . . 5 ⊢ ((card‘𝐴) = 1o → 𝐴 ∈ dom card) |
| 14 | 1on 8446 | . . . . . 6 ⊢ 1o ∈ On | |
| 15 | onenon 9902 | . . . . . 6 ⊢ (1o ∈ On → 1o ∈ dom card) | |
| 16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ 1o ∈ dom card |
| 17 | carden2 9940 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o)) | |
| 18 | 13, 16, 17 | sylancl 586 | . . . 4 ⊢ ((card‘𝐴) = 1o → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o)) |
| 19 | 7, 18 | mpbid 232 | . . 3 ⊢ ((card‘𝐴) = 1o → 𝐴 ≈ 1o) |
| 20 | 5, 19 | impbii 209 | . 2 ⊢ (𝐴 ≈ 1o ↔ (card‘𝐴) = 1o) |
| 21 | fveqeq2 6867 | . . 3 ⊢ (𝑥 = 𝐴 → ((card‘𝑥) = 1o ↔ (card‘𝐴) = 1o)) | |
| 22 | 13, 21 | elab3 3653 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o} ↔ (card‘𝐴) = 1o) |
| 23 | 20, 22 | bitr4i 278 | 1 ⊢ (𝐴 ≈ 1o ↔ 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∅c0 4296 class class class wbr 5107 dom cdm 5638 Oncon0 6332 ‘cfv 6511 ωcom 7842 1oc1o 8427 ≈ cen 8915 cardccrd 9888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |