![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm54.43lem | Structured version Visualization version GIF version |
Description: In Theorem *54.43 of [WhiteheadRussell] p. 360, the number 1 is defined as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 10037), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}. Here we show that this is equivalent to 𝐴 ≈ 1o so that we can use the latter more convenient notation in pm54.43 10070. (Contributed by NM, 4-Nov-2013.) |
Ref | Expression |
---|---|
pm54.43lem | ⊢ (𝐴 ≈ 1o ↔ 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carden2b 10036 | . . . 4 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o)) | |
2 | 1onn 8696 | . . . . 5 ⊢ 1o ∈ ω | |
3 | cardnn 10032 | . . . . 5 ⊢ (1o ∈ ω → (card‘1o) = 1o) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (card‘1o) = 1o |
5 | 1, 4 | eqtrdi 2796 | . . 3 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = 1o) |
6 | 4 | eqeq2i 2753 | . . . . 5 ⊢ ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o) |
7 | 6 | biimpri 228 | . . . 4 ⊢ ((card‘𝐴) = 1o → (card‘𝐴) = (card‘1o)) |
8 | 1n0 8544 | . . . . . . . 8 ⊢ 1o ≠ ∅ | |
9 | 8 | neii 2948 | . . . . . . 7 ⊢ ¬ 1o = ∅ |
10 | eqeq1 2744 | . . . . . . 7 ⊢ ((card‘𝐴) = 1o → ((card‘𝐴) = ∅ ↔ 1o = ∅)) | |
11 | 9, 10 | mtbiri 327 | . . . . . 6 ⊢ ((card‘𝐴) = 1o → ¬ (card‘𝐴) = ∅) |
12 | ndmfv 6955 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
13 | 11, 12 | nsyl2 141 | . . . . 5 ⊢ ((card‘𝐴) = 1o → 𝐴 ∈ dom card) |
14 | 1on 8534 | . . . . . 6 ⊢ 1o ∈ On | |
15 | onenon 10018 | . . . . . 6 ⊢ (1o ∈ On → 1o ∈ dom card) | |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ 1o ∈ dom card |
17 | carden2 10056 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o)) | |
18 | 13, 16, 17 | sylancl 585 | . . . 4 ⊢ ((card‘𝐴) = 1o → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o)) |
19 | 7, 18 | mpbid 232 | . . 3 ⊢ ((card‘𝐴) = 1o → 𝐴 ≈ 1o) |
20 | 5, 19 | impbii 209 | . 2 ⊢ (𝐴 ≈ 1o ↔ (card‘𝐴) = 1o) |
21 | fveqeq2 6929 | . . 3 ⊢ (𝑥 = 𝐴 → ((card‘𝑥) = 1o ↔ (card‘𝐴) = 1o)) | |
22 | 13, 21 | elab3 3702 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o} ↔ (card‘𝐴) = 1o) |
23 | 20, 22 | bitr4i 278 | 1 ⊢ (𝐴 ≈ 1o ↔ 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 ∅c0 4352 class class class wbr 5166 dom cdm 5700 Oncon0 6395 ‘cfv 6573 ωcom 7903 1oc1o 8515 ≈ cen 9000 cardccrd 10004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |