MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm54.43lem Structured version   Visualization version   GIF version

Theorem pm54.43lem 9413
Description: In Theorem *54.43 of [WhiteheadRussell] p. 360, the number 1 is defined as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9381), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}. Here we show that this is equivalent to 𝐴 ≈ 1o so that we can use the latter more convenient notation in pm54.43 9414. (Contributed by NM, 4-Nov-2013.)
Assertion
Ref Expression
pm54.43lem (𝐴 ≈ 1o𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o})
Distinct variable group:   𝑥,𝐴

Proof of Theorem pm54.43lem
StepHypRef Expression
1 carden2b 9380 . . . 4 (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o))
2 1onn 8248 . . . . 5 1o ∈ ω
3 cardnn 9376 . . . . 5 (1o ∈ ω → (card‘1o) = 1o)
42, 3ax-mp 5 . . . 4 (card‘1o) = 1o
51, 4eqtrdi 2849 . . 3 (𝐴 ≈ 1o → (card‘𝐴) = 1o)
64eqeq2i 2811 . . . . 5 ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o)
76biimpri 231 . . . 4 ((card‘𝐴) = 1o → (card‘𝐴) = (card‘1o))
8 1n0 8102 . . . . . . . 8 1o ≠ ∅
98neii 2989 . . . . . . 7 ¬ 1o = ∅
10 eqeq1 2802 . . . . . . 7 ((card‘𝐴) = 1o → ((card‘𝐴) = ∅ ↔ 1o = ∅))
119, 10mtbiri 330 . . . . . 6 ((card‘𝐴) = 1o → ¬ (card‘𝐴) = ∅)
12 ndmfv 6675 . . . . . 6 𝐴 ∈ dom card → (card‘𝐴) = ∅)
1311, 12nsyl2 143 . . . . 5 ((card‘𝐴) = 1o𝐴 ∈ dom card)
14 1on 8092 . . . . . 6 1o ∈ On
15 onenon 9362 . . . . . 6 (1o ∈ On → 1o ∈ dom card)
1614, 15ax-mp 5 . . . . 5 1o ∈ dom card
17 carden2 9400 . . . . 5 ((𝐴 ∈ dom card ∧ 1o ∈ dom card) → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
1813, 16, 17sylancl 589 . . . 4 ((card‘𝐴) = 1o → ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o))
197, 18mpbid 235 . . 3 ((card‘𝐴) = 1o𝐴 ≈ 1o)
205, 19impbii 212 . 2 (𝐴 ≈ 1o ↔ (card‘𝐴) = 1o)
2113elexd 3461 . . 3 ((card‘𝐴) = 1o𝐴 ∈ V)
22 fveqeq2 6654 . . 3 (𝑥 = 𝐴 → ((card‘𝑥) = 1o ↔ (card‘𝐴) = 1o))
2321, 22elab3 3622 . 2 (𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o} ↔ (card‘𝐴) = 1o)
2420, 23bitr4i 281 1 (𝐴 ≈ 1o𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o})
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1538  wcel 2111  {cab 2776  c0 4243   class class class wbr 5030  dom cdm 5519  Oncon0 6159  cfv 6324  ωcom 7560  1oc1o 8078  cen 8489  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator