| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ispautN | Structured version Visualization version GIF version | ||
| Description: The predicate "is a projective automorphism". (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pautset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| pautset.m | ⊢ 𝑀 = (PAut‘𝐾) |
| Ref | Expression |
|---|---|
| ispautN | ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pautset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 2 | pautset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
| 3 | 1, 2 | pautsetN 40100 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝑀 = {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |
| 4 | 3 | eleq2d 2827 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))})) |
| 5 | f1of 6848 | . . . . 5 ⊢ (𝐹:𝑆–1-1-onto→𝑆 → 𝐹:𝑆⟶𝑆) | |
| 6 | 1 | fvexi 6920 | . . . . 5 ⊢ 𝑆 ∈ V |
| 7 | fex 7246 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝑆 ∧ 𝑆 ∈ V) → 𝐹 ∈ V) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . 4 ⊢ (𝐹:𝑆–1-1-onto→𝑆 → 𝐹 ∈ V) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))) → 𝐹 ∈ V) |
| 10 | f1oeq1 6836 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝑆–1-1-onto→𝑆 ↔ 𝐹:𝑆–1-1-onto→𝑆)) | |
| 11 | fveq1 6905 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 12 | fveq1 6905 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
| 13 | 11, 12 | sseq12d 4017 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ⊆ (𝑓‘𝑦) ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))) |
| 14 | 13 | bibi2d 342 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) ↔ (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
| 15 | 14 | 2ralbidv 3221 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
| 16 | 10, 15 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦))) ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
| 17 | 9, 16 | elab3 3686 | . 2 ⊢ (𝐹 ∈ {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))} ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
| 18 | 4, 17 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 Vcvv 3480 ⊆ wss 3951 ⟶wf 6557 –1-1-onto→wf1o 6560 ‘cfv 6561 PSubSpcpsubsp 39498 PAutcpautN 39989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-pautN 39993 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |