Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispautN | Structured version Visualization version GIF version |
Description: The predicate "is a projective automorphism". (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pautset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
pautset.m | ⊢ 𝑀 = (PAut‘𝐾) |
Ref | Expression |
---|---|
ispautN | ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pautset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
2 | pautset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
3 | 1, 2 | pautsetN 38039 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝑀 = {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |
4 | 3 | eleq2d 2824 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))})) |
5 | f1of 6700 | . . . . 5 ⊢ (𝐹:𝑆–1-1-onto→𝑆 → 𝐹:𝑆⟶𝑆) | |
6 | 1 | fvexi 6770 | . . . . 5 ⊢ 𝑆 ∈ V |
7 | fex 7084 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝑆 ∧ 𝑆 ∈ V) → 𝐹 ∈ V) | |
8 | 5, 6, 7 | sylancl 585 | . . . 4 ⊢ (𝐹:𝑆–1-1-onto→𝑆 → 𝐹 ∈ V) |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))) → 𝐹 ∈ V) |
10 | f1oeq1 6688 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝑆–1-1-onto→𝑆 ↔ 𝐹:𝑆–1-1-onto→𝑆)) | |
11 | fveq1 6755 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
12 | fveq1 6755 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
13 | 11, 12 | sseq12d 3950 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ⊆ (𝑓‘𝑦) ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))) |
14 | 13 | bibi2d 342 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) ↔ (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
15 | 14 | 2ralbidv 3122 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
16 | 10, 15 | anbi12d 630 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦))) ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
17 | 9, 16 | elab3 3610 | . 2 ⊢ (𝐹 ∈ {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))} ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
18 | 4, 17 | bitrdi 286 | 1 ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 PSubSpcpsubsp 37437 PAutcpautN 37928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-pautN 37932 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |