![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispautN | Structured version Visualization version GIF version |
Description: The predicate "is a projective automorphism". (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pautset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
pautset.m | ⊢ 𝑀 = (PAut‘𝐾) |
Ref | Expression |
---|---|
ispautN | ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pautset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
2 | pautset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
3 | 1, 2 | pautsetN 39571 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝑀 = {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |
4 | 3 | eleq2d 2815 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))})) |
5 | f1of 6839 | . . . . 5 ⊢ (𝐹:𝑆–1-1-onto→𝑆 → 𝐹:𝑆⟶𝑆) | |
6 | 1 | fvexi 6911 | . . . . 5 ⊢ 𝑆 ∈ V |
7 | fex 7238 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝑆 ∧ 𝑆 ∈ V) → 𝐹 ∈ V) | |
8 | 5, 6, 7 | sylancl 585 | . . . 4 ⊢ (𝐹:𝑆–1-1-onto→𝑆 → 𝐹 ∈ V) |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))) → 𝐹 ∈ V) |
10 | f1oeq1 6827 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝑆–1-1-onto→𝑆 ↔ 𝐹:𝑆–1-1-onto→𝑆)) | |
11 | fveq1 6896 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
12 | fveq1 6896 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
13 | 11, 12 | sseq12d 4013 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ⊆ (𝑓‘𝑦) ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))) |
14 | 13 | bibi2d 342 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) ↔ (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
15 | 14 | 2ralbidv 3215 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
16 | 10, 15 | anbi12d 631 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦))) ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
17 | 9, 16 | elab3 3675 | . 2 ⊢ (𝐹 ∈ {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))} ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
18 | 4, 17 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2705 ∀wral 3058 Vcvv 3471 ⊆ wss 3947 ⟶wf 6544 –1-1-onto→wf1o 6547 ‘cfv 6548 PSubSpcpsubsp 38969 PAutcpautN 39460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-map 8847 df-pautN 39464 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |