Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispautN Structured version   Visualization version   GIF version

Theorem ispautN 40123
Description: The predicate "is a projective automorphism". (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pautset.s 𝑆 = (PSubSp‘𝐾)
pautset.m 𝑀 = (PAut‘𝐾)
Assertion
Ref Expression
ispautN (𝐾𝐵 → (𝐹𝑀 ↔ (𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐾   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐾(𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem ispautN
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 pautset.s . . . 4 𝑆 = (PSubSp‘𝐾)
2 pautset.m . . . 4 𝑀 = (PAut‘𝐾)
31, 2pautsetN 40122 . . 3 (𝐾𝐵𝑀 = {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
43eleq2d 2821 . 2 (𝐾𝐵 → (𝐹𝑀𝐹 ∈ {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))}))
5 f1of 6823 . . . . 5 (𝐹:𝑆1-1-onto𝑆𝐹:𝑆𝑆)
61fvexi 6895 . . . . 5 𝑆 ∈ V
7 fex 7223 . . . . 5 ((𝐹:𝑆𝑆𝑆 ∈ V) → 𝐹 ∈ V)
85, 6, 7sylancl 586 . . . 4 (𝐹:𝑆1-1-onto𝑆𝐹 ∈ V)
98adantr 480 . . 3 ((𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦))) → 𝐹 ∈ V)
10 f1oeq1 6811 . . . 4 (𝑓 = 𝐹 → (𝑓:𝑆1-1-onto𝑆𝐹:𝑆1-1-onto𝑆))
11 fveq1 6880 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
12 fveq1 6880 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1311, 12sseq12d 3997 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑥) ⊆ (𝑓𝑦) ↔ (𝐹𝑥) ⊆ (𝐹𝑦)))
1413bibi2d 342 . . . . 5 (𝑓 = 𝐹 → ((𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)) ↔ (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦))))
15142ralbidv 3209 . . . 4 (𝑓 = 𝐹 → (∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦))))
1610, 15anbi12d 632 . . 3 (𝑓 = 𝐹 → ((𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦))) ↔ (𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦)))))
179, 16elab3 3670 . 2 (𝐹 ∈ {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))} ↔ (𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦))))
184, 17bitrdi 287 1 (𝐾𝐵 → (𝐹𝑀 ↔ (𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  wral 3052  Vcvv 3464  wss 3931  wf 6532  1-1-ontowf1o 6535  cfv 6536  PSubSpcpsubsp 39520  PAutcpautN 40011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-pautN 40015
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator