Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispautN Structured version   Visualization version   GIF version

Theorem ispautN 39482
Description: The predicate "is a projective automorphism". (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pautset.s 𝑆 = (PSubSp‘𝐾)
pautset.m 𝑀 = (PAut‘𝐾)
Assertion
Ref Expression
ispautN (𝐾𝐵 → (𝐹𝑀 ↔ (𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐾   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐾(𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem ispautN
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 pautset.s . . . 4 𝑆 = (PSubSp‘𝐾)
2 pautset.m . . . 4 𝑀 = (PAut‘𝐾)
31, 2pautsetN 39481 . . 3 (𝐾𝐵𝑀 = {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
43eleq2d 2813 . 2 (𝐾𝐵 → (𝐹𝑀𝐹 ∈ {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))}))
5 f1of 6826 . . . . 5 (𝐹:𝑆1-1-onto𝑆𝐹:𝑆𝑆)
61fvexi 6898 . . . . 5 𝑆 ∈ V
7 fex 7222 . . . . 5 ((𝐹:𝑆𝑆𝑆 ∈ V) → 𝐹 ∈ V)
85, 6, 7sylancl 585 . . . 4 (𝐹:𝑆1-1-onto𝑆𝐹 ∈ V)
98adantr 480 . . 3 ((𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦))) → 𝐹 ∈ V)
10 f1oeq1 6814 . . . 4 (𝑓 = 𝐹 → (𝑓:𝑆1-1-onto𝑆𝐹:𝑆1-1-onto𝑆))
11 fveq1 6883 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
12 fveq1 6883 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1311, 12sseq12d 4010 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑥) ⊆ (𝑓𝑦) ↔ (𝐹𝑥) ⊆ (𝐹𝑦)))
1413bibi2d 342 . . . . 5 (𝑓 = 𝐹 → ((𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)) ↔ (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦))))
15142ralbidv 3212 . . . 4 (𝑓 = 𝐹 → (∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦))))
1610, 15anbi12d 630 . . 3 (𝑓 = 𝐹 → ((𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦))) ↔ (𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦)))))
179, 16elab3 3671 . 2 (𝐹 ∈ {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))} ↔ (𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦))))
184, 17bitrdi 287 1 (𝐾𝐵 → (𝐹𝑀 ↔ (𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  {cab 2703  wral 3055  Vcvv 3468  wss 3943  wf 6532  1-1-ontowf1o 6535  cfv 6536  PSubSpcpsubsp 38879  PAutcpautN 39370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-map 8821  df-pautN 39374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator