![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispautN | Structured version Visualization version GIF version |
Description: The predicate "is a projective automorphism". (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pautset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
pautset.m | ⊢ 𝑀 = (PAut‘𝐾) |
Ref | Expression |
---|---|
ispautN | ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pautset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
2 | pautset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
3 | 1, 2 | pautsetN 40081 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝑀 = {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |
4 | 3 | eleq2d 2825 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))})) |
5 | f1of 6849 | . . . . 5 ⊢ (𝐹:𝑆–1-1-onto→𝑆 → 𝐹:𝑆⟶𝑆) | |
6 | 1 | fvexi 6921 | . . . . 5 ⊢ 𝑆 ∈ V |
7 | fex 7246 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝑆 ∧ 𝑆 ∈ V) → 𝐹 ∈ V) | |
8 | 5, 6, 7 | sylancl 586 | . . . 4 ⊢ (𝐹:𝑆–1-1-onto→𝑆 → 𝐹 ∈ V) |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))) → 𝐹 ∈ V) |
10 | f1oeq1 6837 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝑆–1-1-onto→𝑆 ↔ 𝐹:𝑆–1-1-onto→𝑆)) | |
11 | fveq1 6906 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
12 | fveq1 6906 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
13 | 11, 12 | sseq12d 4029 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ⊆ (𝑓‘𝑦) ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))) |
14 | 13 | bibi2d 342 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) ↔ (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
15 | 14 | 2ralbidv 3219 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
16 | 10, 15 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦))) ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
17 | 9, 16 | elab3 3689 | . 2 ⊢ (𝐹 ∈ {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))} ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
18 | 4, 17 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 ⟶wf 6559 –1-1-onto→wf1o 6562 ‘cfv 6563 PSubSpcpsubsp 39479 PAutcpautN 39970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-pautN 39974 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |