![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispautN | Structured version Visualization version GIF version |
Description: The predicate "is a projective automorphism". (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pautset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
pautset.m | ⊢ 𝑀 = (PAut‘𝐾) |
Ref | Expression |
---|---|
ispautN | ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pautset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
2 | pautset.m | . . . 4 ⊢ 𝑀 = (PAut‘𝐾) | |
3 | 1, 2 | pautsetN 38607 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝑀 = {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |
4 | 3 | eleq2d 2820 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))})) |
5 | f1of 6785 | . . . . 5 ⊢ (𝐹:𝑆–1-1-onto→𝑆 → 𝐹:𝑆⟶𝑆) | |
6 | 1 | fvexi 6857 | . . . . 5 ⊢ 𝑆 ∈ V |
7 | fex 7177 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝑆 ∧ 𝑆 ∈ V) → 𝐹 ∈ V) | |
8 | 5, 6, 7 | sylancl 587 | . . . 4 ⊢ (𝐹:𝑆–1-1-onto→𝑆 → 𝐹 ∈ V) |
9 | 8 | adantr 482 | . . 3 ⊢ ((𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))) → 𝐹 ∈ V) |
10 | f1oeq1 6773 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝑆–1-1-onto→𝑆 ↔ 𝐹:𝑆–1-1-onto→𝑆)) | |
11 | fveq1 6842 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
12 | fveq1 6842 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
13 | 11, 12 | sseq12d 3978 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ⊆ (𝑓‘𝑦) ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))) |
14 | 13 | bibi2d 343 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) ↔ (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
15 | 14 | 2ralbidv 3209 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
16 | 10, 15 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦))) ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
17 | 9, 16 | elab3 3639 | . 2 ⊢ (𝐹 ∈ {𝑓 ∣ (𝑓:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))} ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦)))) |
18 | 4, 17 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐵 → (𝐹 ∈ 𝑀 ↔ (𝐹:𝑆–1-1-onto→𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 ∀wral 3061 Vcvv 3444 ⊆ wss 3911 ⟶wf 6493 –1-1-onto→wf1o 6496 ‘cfv 6497 PSubSpcpsubsp 38005 PAutcpautN 38496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-map 8770 df-pautN 38500 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |