Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispautN Structured version   Visualization version   GIF version

Theorem ispautN 40100
Description: The predicate "is a projective automorphism". (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pautset.s 𝑆 = (PSubSp‘𝐾)
pautset.m 𝑀 = (PAut‘𝐾)
Assertion
Ref Expression
ispautN (𝐾𝐵 → (𝐹𝑀 ↔ (𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐾   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐾(𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem ispautN
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 pautset.s . . . 4 𝑆 = (PSubSp‘𝐾)
2 pautset.m . . . 4 𝑀 = (PAut‘𝐾)
31, 2pautsetN 40099 . . 3 (𝐾𝐵𝑀 = {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
43eleq2d 2815 . 2 (𝐾𝐵 → (𝐹𝑀𝐹 ∈ {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))}))
5 f1of 6803 . . . . 5 (𝐹:𝑆1-1-onto𝑆𝐹:𝑆𝑆)
61fvexi 6875 . . . . 5 𝑆 ∈ V
7 fex 7203 . . . . 5 ((𝐹:𝑆𝑆𝑆 ∈ V) → 𝐹 ∈ V)
85, 6, 7sylancl 586 . . . 4 (𝐹:𝑆1-1-onto𝑆𝐹 ∈ V)
98adantr 480 . . 3 ((𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦))) → 𝐹 ∈ V)
10 f1oeq1 6791 . . . 4 (𝑓 = 𝐹 → (𝑓:𝑆1-1-onto𝑆𝐹:𝑆1-1-onto𝑆))
11 fveq1 6860 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
12 fveq1 6860 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1311, 12sseq12d 3983 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑥) ⊆ (𝑓𝑦) ↔ (𝐹𝑥) ⊆ (𝐹𝑦)))
1413bibi2d 342 . . . . 5 (𝑓 = 𝐹 → ((𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)) ↔ (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦))))
15142ralbidv 3202 . . . 4 (𝑓 = 𝐹 → (∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦))))
1610, 15anbi12d 632 . . 3 (𝑓 = 𝐹 → ((𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦))) ↔ (𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦)))))
179, 16elab3 3656 . 2 (𝐹 ∈ {𝑓 ∣ (𝑓:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))} ↔ (𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦))))
184, 17bitrdi 287 1 (𝐾𝐵 → (𝐹𝑀 ↔ (𝐹:𝑆1-1-onto𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wral 3045  Vcvv 3450  wss 3917  wf 6510  1-1-ontowf1o 6513  cfv 6514  PSubSpcpsubsp 39497  PAutcpautN 39988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-pautN 39992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator