![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsnel | Structured version Visualization version GIF version |
Description: Member of span of the singleton of a vector. (elspansn 31396 analog.) (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspsn.f | β’ πΉ = (Scalarβπ) |
lspsn.k | β’ πΎ = (BaseβπΉ) |
lspsn.v | β’ π = (Baseβπ) |
lspsn.t | β’ Β· = ( Β·π βπ) |
lspsn.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspsnel | β’ ((π β LMod β§ π β π) β (π β (πβ{π}) β βπ β πΎ π = (π Β· π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsn.f | . . . 4 β’ πΉ = (Scalarβπ) | |
2 | lspsn.k | . . . 4 β’ πΎ = (BaseβπΉ) | |
3 | lspsn.v | . . . 4 β’ π = (Baseβπ) | |
4 | lspsn.t | . . . 4 β’ Β· = ( Β·π βπ) | |
5 | lspsn.n | . . . 4 β’ π = (LSpanβπ) | |
6 | 1, 2, 3, 4, 5 | lspsn 20893 | . . 3 β’ ((π β LMod β§ π β π) β (πβ{π}) = {π£ β£ βπ β πΎ π£ = (π Β· π)}) |
7 | 6 | eleq2d 2815 | . 2 β’ ((π β LMod β§ π β π) β (π β (πβ{π}) β π β {π£ β£ βπ β πΎ π£ = (π Β· π)})) |
8 | id 22 | . . . . 5 β’ (π = (π Β· π) β π = (π Β· π)) | |
9 | ovex 7459 | . . . . 5 β’ (π Β· π) β V | |
10 | 8, 9 | eqeltrdi 2837 | . . . 4 β’ (π = (π Β· π) β π β V) |
11 | 10 | rexlimivw 3148 | . . 3 β’ (βπ β πΎ π = (π Β· π) β π β V) |
12 | eqeq1 2732 | . . . 4 β’ (π£ = π β (π£ = (π Β· π) β π = (π Β· π))) | |
13 | 12 | rexbidv 3176 | . . 3 β’ (π£ = π β (βπ β πΎ π£ = (π Β· π) β βπ β πΎ π = (π Β· π))) |
14 | 11, 13 | elab3 3677 | . 2 β’ (π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β βπ β πΎ π = (π Β· π)) |
15 | 7, 14 | bitrdi 286 | 1 β’ ((π β LMod β§ π β π) β (π β (πβ{π}) β βπ β πΎ π = (π Β· π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 {cab 2705 βwrex 3067 Vcvv 3473 {csn 4632 βcfv 6553 (class class class)co 7426 Basecbs 17187 Scalarcsca 17243 Β·π cvsca 17244 LModclmod 20750 LSpanclspn 20862 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-plusg 17253 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-minusg 18901 df-sbg 18902 df-mgp 20082 df-ur 20129 df-ring 20182 df-lmod 20752 df-lss 20823 df-lsp 20863 |
This theorem is referenced by: lspsnss2 20896 lsmspsn 20976 lspsneleq 21010 lspsneq 21017 lspdisj 21020 rspsn 21230 rspsnel 33107 ccfldextdgrr 33393 lshpdisj 38491 lshpsmreu 38613 lkrlspeqN 38675 lcfl7lem 41004 lcfrvalsnN 41046 mapdpglem3 41180 hdmapglem7a 41432 |
Copyright terms: Public domain | W3C validator |