![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsnel | Structured version Visualization version GIF version |
Description: Member of span of the singleton of a vector. (elspansn 31323 analog.) (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspsn.f | β’ πΉ = (Scalarβπ) |
lspsn.k | β’ πΎ = (BaseβπΉ) |
lspsn.v | β’ π = (Baseβπ) |
lspsn.t | β’ Β· = ( Β·π βπ) |
lspsn.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspsnel | β’ ((π β LMod β§ π β π) β (π β (πβ{π}) β βπ β πΎ π = (π Β· π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsn.f | . . . 4 β’ πΉ = (Scalarβπ) | |
2 | lspsn.k | . . . 4 β’ πΎ = (BaseβπΉ) | |
3 | lspsn.v | . . . 4 β’ π = (Baseβπ) | |
4 | lspsn.t | . . . 4 β’ Β· = ( Β·π βπ) | |
5 | lspsn.n | . . . 4 β’ π = (LSpanβπ) | |
6 | 1, 2, 3, 4, 5 | lspsn 20846 | . . 3 β’ ((π β LMod β§ π β π) β (πβ{π}) = {π£ β£ βπ β πΎ π£ = (π Β· π)}) |
7 | 6 | eleq2d 2813 | . 2 β’ ((π β LMod β§ π β π) β (π β (πβ{π}) β π β {π£ β£ βπ β πΎ π£ = (π Β· π)})) |
8 | id 22 | . . . . 5 β’ (π = (π Β· π) β π = (π Β· π)) | |
9 | ovex 7437 | . . . . 5 β’ (π Β· π) β V | |
10 | 8, 9 | eqeltrdi 2835 | . . . 4 β’ (π = (π Β· π) β π β V) |
11 | 10 | rexlimivw 3145 | . . 3 β’ (βπ β πΎ π = (π Β· π) β π β V) |
12 | eqeq1 2730 | . . . 4 β’ (π£ = π β (π£ = (π Β· π) β π = (π Β· π))) | |
13 | 12 | rexbidv 3172 | . . 3 β’ (π£ = π β (βπ β πΎ π£ = (π Β· π) β βπ β πΎ π = (π Β· π))) |
14 | 11, 13 | elab3 3671 | . 2 β’ (π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β βπ β πΎ π = (π Β· π)) |
15 | 7, 14 | bitrdi 287 | 1 β’ ((π β LMod β§ π β π) β (π β (πβ{π}) β βπ β πΎ π = (π Β· π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 {cab 2703 βwrex 3064 Vcvv 3468 {csn 4623 βcfv 6536 (class class class)co 7404 Basecbs 17150 Scalarcsca 17206 Β·π cvsca 17207 LModclmod 20703 LSpanclspn 20815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-plusg 17216 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 df-minusg 18864 df-sbg 18865 df-mgp 20037 df-ur 20084 df-ring 20137 df-lmod 20705 df-lss 20776 df-lsp 20816 |
This theorem is referenced by: lspsnss2 20849 lsmspsn 20929 lspsneleq 20963 lspsneq 20970 lspdisj 20973 rspsn 21183 rspsnel 32989 ccfldextdgrr 33264 lshpdisj 38369 lshpsmreu 38491 lkrlspeqN 38553 lcfl7lem 40882 lcfrvalsnN 40924 mapdpglem3 41058 hdmapglem7a 41310 |
Copyright terms: Public domain | W3C validator |