![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsnel | Structured version Visualization version GIF version |
Description: Member of span of the singleton of a vector. (elspansn 30819 analog.) (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspsn.f | β’ πΉ = (Scalarβπ) |
lspsn.k | β’ πΎ = (BaseβπΉ) |
lspsn.v | β’ π = (Baseβπ) |
lspsn.t | β’ Β· = ( Β·π βπ) |
lspsn.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspsnel | β’ ((π β LMod β§ π β π) β (π β (πβ{π}) β βπ β πΎ π = (π Β· π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsn.f | . . . 4 β’ πΉ = (Scalarβπ) | |
2 | lspsn.k | . . . 4 β’ πΎ = (BaseβπΉ) | |
3 | lspsn.v | . . . 4 β’ π = (Baseβπ) | |
4 | lspsn.t | . . . 4 β’ Β· = ( Β·π βπ) | |
5 | lspsn.n | . . . 4 β’ π = (LSpanβπ) | |
6 | 1, 2, 3, 4, 5 | lspsn 20613 | . . 3 β’ ((π β LMod β§ π β π) β (πβ{π}) = {π£ β£ βπ β πΎ π£ = (π Β· π)}) |
7 | 6 | eleq2d 2820 | . 2 β’ ((π β LMod β§ π β π) β (π β (πβ{π}) β π β {π£ β£ βπ β πΎ π£ = (π Β· π)})) |
8 | id 22 | . . . . 5 β’ (π = (π Β· π) β π = (π Β· π)) | |
9 | ovex 7442 | . . . . 5 β’ (π Β· π) β V | |
10 | 8, 9 | eqeltrdi 2842 | . . . 4 β’ (π = (π Β· π) β π β V) |
11 | 10 | rexlimivw 3152 | . . 3 β’ (βπ β πΎ π = (π Β· π) β π β V) |
12 | eqeq1 2737 | . . . 4 β’ (π£ = π β (π£ = (π Β· π) β π = (π Β· π))) | |
13 | 12 | rexbidv 3179 | . . 3 β’ (π£ = π β (βπ β πΎ π£ = (π Β· π) β βπ β πΎ π = (π Β· π))) |
14 | 11, 13 | elab3 3677 | . 2 β’ (π β {π£ β£ βπ β πΎ π£ = (π Β· π)} β βπ β πΎ π = (π Β· π)) |
15 | 7, 14 | bitrdi 287 | 1 β’ ((π β LMod β§ π β π) β (π β (πβ{π}) β βπ β πΎ π = (π Β· π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 {cab 2710 βwrex 3071 Vcvv 3475 {csn 4629 βcfv 6544 (class class class)co 7409 Basecbs 17144 Scalarcsca 17200 Β·π cvsca 17201 LModclmod 20471 LSpanclspn 20582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-sbg 18824 df-mgp 19988 df-ur 20005 df-ring 20058 df-lmod 20473 df-lss 20543 df-lsp 20583 |
This theorem is referenced by: lspsnss2 20616 lsmspsn 20695 lspsneleq 20728 lspsneq 20735 lspdisj 20738 rspsn 20892 rspsnel 32484 ccfldextdgrr 32746 lshpdisj 37857 lshpsmreu 37979 lkrlspeqN 38041 lcfl7lem 40370 lcfrvalsnN 40412 mapdpglem3 40546 hdmapglem7a 40798 |
Copyright terms: Public domain | W3C validator |