![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islaut | Structured version Visualization version GIF version |
Description: The predictate "is a lattice automorphism." (Contributed by NM, 11-May-2012.) |
Ref | Expression |
---|---|
lautset.b | ⊢ 𝐵 = (Base‘𝐾) |
lautset.l | ⊢ ≤ = (le‘𝐾) |
lautset.i | ⊢ 𝐼 = (LAut‘𝐾) |
Ref | Expression |
---|---|
islaut | ⊢ (𝐾 ∈ 𝐴 → (𝐹 ∈ 𝐼 ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lautset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lautset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | lautset.i | . . . 4 ⊢ 𝐼 = (LAut‘𝐾) | |
4 | 1, 2, 3 | lautset 36103 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝐼 = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))}) |
5 | 4 | eleq2d 2864 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝐹 ∈ 𝐼 ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))})) |
6 | f1of 6356 | . . . . 5 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵⟶𝐵) | |
7 | 1 | fvexi 6425 | . . . . 5 ⊢ 𝐵 ∈ V |
8 | fex 6718 | . . . . 5 ⊢ ((𝐹:𝐵⟶𝐵 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
9 | 6, 7, 8 | sylancl 581 | . . . 4 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹 ∈ V) |
10 | 9 | adantr 473 | . . 3 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) → 𝐹 ∈ V) |
11 | f1oeq1 6345 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝐵–1-1-onto→𝐵 ↔ 𝐹:𝐵–1-1-onto→𝐵)) | |
12 | fveq1 6410 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
13 | fveq1 6410 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
14 | 12, 13 | breq12d 4856 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ≤ (𝑓‘𝑦) ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
15 | 14 | bibi2d 334 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)) ↔ (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)))) |
16 | 15 | 2ralbidv 3170 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)))) |
17 | 11, 16 | anbi12d 625 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦))) ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) |
18 | 10, 17 | elab3 3550 | . 2 ⊢ (𝐹 ∈ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))} ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)))) |
19 | 5, 18 | syl6bb 279 | 1 ⊢ (𝐾 ∈ 𝐴 → (𝐹 ∈ 𝐼 ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {cab 2785 ∀wral 3089 Vcvv 3385 class class class wbr 4843 ⟶wf 6097 –1-1-onto→wf1o 6100 ‘cfv 6101 Basecbs 16184 lecple 16274 LAutclaut 36006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-map 8097 df-laut 36010 |
This theorem is referenced by: lautle 36105 laut1o 36106 lautcnv 36111 idlaut 36117 lautco 36118 cdleme50laut 36568 |
Copyright terms: Public domain | W3C validator |