Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islaut Structured version   Visualization version   GIF version

Theorem islaut 38097
Description: The predicate "is a lattice automorphism". (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lautset.b 𝐵 = (Base‘𝐾)
lautset.l = (le‘𝐾)
lautset.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
islaut (𝐾𝐴 → (𝐹𝐼 ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐼(𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem islaut
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lautset.b . . . 4 𝐵 = (Base‘𝐾)
2 lautset.l . . . 4 = (le‘𝐾)
3 lautset.i . . . 4 𝐼 = (LAut‘𝐾)
41, 2, 3lautset 38096 . . 3 (𝐾𝐴𝐼 = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
54eleq2d 2824 . 2 (𝐾𝐴 → (𝐹𝐼𝐹 ∈ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))}))
6 f1of 6716 . . . . 5 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
71fvexi 6788 . . . . 5 𝐵 ∈ V
8 fex 7102 . . . . 5 ((𝐹:𝐵𝐵𝐵 ∈ V) → 𝐹 ∈ V)
96, 7, 8sylancl 586 . . . 4 (𝐹:𝐵1-1-onto𝐵𝐹 ∈ V)
109adantr 481 . . 3 ((𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦))) → 𝐹 ∈ V)
11 f1oeq1 6704 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐵1-1-onto𝐵𝐹:𝐵1-1-onto𝐵))
12 fveq1 6773 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
13 fveq1 6773 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1412, 13breq12d 5087 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦) ↔ (𝐹𝑥) (𝐹𝑦)))
1514bibi2d 343 . . . . 5 (𝑓 = 𝐹 → ((𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)) ↔ (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦))))
16152ralbidv 3129 . . . 4 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦))))
1711, 16anbi12d 631 . . 3 (𝑓 = 𝐹 → ((𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))) ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))))
1810, 17elab3 3617 . 2 (𝐹 ∈ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))} ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦))))
195, 18bitrdi 287 1 (𝐾𝐴 → (𝐹𝐼 ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  Vcvv 3432   class class class wbr 5074  wf 6429  1-1-ontowf1o 6432  cfv 6433  Basecbs 16912  lecple 16969  LAutclaut 37999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-laut 38003
This theorem is referenced by:  lautle  38098  laut1o  38099  lautcnv  38104  idlaut  38110  lautco  38111  cdleme50laut  38561
  Copyright terms: Public domain W3C validator