| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islaut | Structured version Visualization version GIF version | ||
| Description: The predicate "is a lattice automorphism". (Contributed by NM, 11-May-2012.) |
| Ref | Expression |
|---|---|
| lautset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lautset.l | ⊢ ≤ = (le‘𝐾) |
| lautset.i | ⊢ 𝐼 = (LAut‘𝐾) |
| Ref | Expression |
|---|---|
| islaut | ⊢ (𝐾 ∈ 𝐴 → (𝐹 ∈ 𝐼 ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lautset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lautset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | lautset.i | . . . 4 ⊢ 𝐼 = (LAut‘𝐾) | |
| 4 | 1, 2, 3 | lautset 40076 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝐼 = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))}) |
| 5 | 4 | eleq2d 2814 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝐹 ∈ 𝐼 ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))})) |
| 6 | f1of 6800 | . . . . 5 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵⟶𝐵) | |
| 7 | 1 | fvexi 6872 | . . . . 5 ⊢ 𝐵 ∈ V |
| 8 | fex 7200 | . . . . 5 ⊢ ((𝐹:𝐵⟶𝐵 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
| 9 | 6, 7, 8 | sylancl 586 | . . . 4 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹 ∈ V) |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) → 𝐹 ∈ V) |
| 11 | f1oeq1 6788 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝐵–1-1-onto→𝐵 ↔ 𝐹:𝐵–1-1-onto→𝐵)) | |
| 12 | fveq1 6857 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 13 | fveq1 6857 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
| 14 | 12, 13 | breq12d 5120 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ≤ (𝑓‘𝑦) ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 15 | 14 | bibi2d 342 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)) ↔ (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)))) |
| 16 | 15 | 2ralbidv 3201 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)))) |
| 17 | 11, 16 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦))) ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) |
| 18 | 10, 17 | elab3 3653 | . 2 ⊢ (𝐹 ∈ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))} ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)))) |
| 19 | 5, 18 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐴 → (𝐹 ∈ 𝐼 ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 Vcvv 3447 class class class wbr 5107 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 Basecbs 17179 lecple 17227 LAutclaut 39979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-laut 39983 |
| This theorem is referenced by: lautle 40078 laut1o 40079 lautcnv 40084 idlaut 40090 lautco 40091 cdleme50laut 40541 |
| Copyright terms: Public domain | W3C validator |