Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islaut Structured version   Visualization version   GIF version

Theorem islaut 40040
Description: The predicate "is a lattice automorphism". (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lautset.b 𝐵 = (Base‘𝐾)
lautset.l = (le‘𝐾)
lautset.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
islaut (𝐾𝐴 → (𝐹𝐼 ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐼(𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem islaut
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lautset.b . . . 4 𝐵 = (Base‘𝐾)
2 lautset.l . . . 4 = (le‘𝐾)
3 lautset.i . . . 4 𝐼 = (LAut‘𝐾)
41, 2, 3lautset 40039 . . 3 (𝐾𝐴𝐼 = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
54eleq2d 2830 . 2 (𝐾𝐴 → (𝐹𝐼𝐹 ∈ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))}))
6 f1of 6862 . . . . 5 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
71fvexi 6934 . . . . 5 𝐵 ∈ V
8 fex 7263 . . . . 5 ((𝐹:𝐵𝐵𝐵 ∈ V) → 𝐹 ∈ V)
96, 7, 8sylancl 585 . . . 4 (𝐹:𝐵1-1-onto𝐵𝐹 ∈ V)
109adantr 480 . . 3 ((𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦))) → 𝐹 ∈ V)
11 f1oeq1 6850 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐵1-1-onto𝐵𝐹:𝐵1-1-onto𝐵))
12 fveq1 6919 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
13 fveq1 6919 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1412, 13breq12d 5179 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦) ↔ (𝐹𝑥) (𝐹𝑦)))
1514bibi2d 342 . . . . 5 (𝑓 = 𝐹 → ((𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)) ↔ (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦))))
16152ralbidv 3227 . . . 4 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦))))
1711, 16anbi12d 631 . . 3 (𝑓 = 𝐹 → ((𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))) ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))))
1810, 17elab3 3702 . 2 (𝐹 ∈ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))} ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦))))
195, 18bitrdi 287 1 (𝐾𝐴 → (𝐹𝐼 ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  Vcvv 3488   class class class wbr 5166  wf 6569  1-1-ontowf1o 6572  cfv 6573  Basecbs 17258  lecple 17318  LAutclaut 39942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-laut 39946
This theorem is referenced by:  lautle  40041  laut1o  40042  lautcnv  40047  idlaut  40053  lautco  40054  cdleme50laut  40504
  Copyright terms: Public domain W3C validator