|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islaut | Structured version Visualization version GIF version | ||
| Description: The predicate "is a lattice automorphism". (Contributed by NM, 11-May-2012.) | 
| Ref | Expression | 
|---|---|
| lautset.b | ⊢ 𝐵 = (Base‘𝐾) | 
| lautset.l | ⊢ ≤ = (le‘𝐾) | 
| lautset.i | ⊢ 𝐼 = (LAut‘𝐾) | 
| Ref | Expression | 
|---|---|
| islaut | ⊢ (𝐾 ∈ 𝐴 → (𝐹 ∈ 𝐼 ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lautset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lautset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | lautset.i | . . . 4 ⊢ 𝐼 = (LAut‘𝐾) | |
| 4 | 1, 2, 3 | lautset 40085 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝐼 = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))}) | 
| 5 | 4 | eleq2d 2826 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝐹 ∈ 𝐼 ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))})) | 
| 6 | f1of 6847 | . . . . 5 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵⟶𝐵) | |
| 7 | 1 | fvexi 6919 | . . . . 5 ⊢ 𝐵 ∈ V | 
| 8 | fex 7247 | . . . . 5 ⊢ ((𝐹:𝐵⟶𝐵 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
| 9 | 6, 7, 8 | sylancl 586 | . . . 4 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹 ∈ V) | 
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) → 𝐹 ∈ V) | 
| 11 | f1oeq1 6835 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝐵–1-1-onto→𝐵 ↔ 𝐹:𝐵–1-1-onto→𝐵)) | |
| 12 | fveq1 6904 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 13 | fveq1 6904 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
| 14 | 12, 13 | breq12d 5155 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ≤ (𝑓‘𝑦) ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) | 
| 15 | 14 | bibi2d 342 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)) ↔ (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)))) | 
| 16 | 15 | 2ralbidv 3220 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)))) | 
| 17 | 11, 16 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦))) ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) | 
| 18 | 10, 17 | elab3 3685 | . 2 ⊢ (𝐹 ∈ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))} ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)))) | 
| 19 | 5, 18 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐴 → (𝐹 ∈ 𝐼 ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 ∀wral 3060 Vcvv 3479 class class class wbr 5142 ⟶wf 6556 –1-1-onto→wf1o 6559 ‘cfv 6560 Basecbs 17248 lecple 17305 LAutclaut 39988 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 df-laut 39992 | 
| This theorem is referenced by: lautle 40087 laut1o 40088 lautcnv 40093 idlaut 40099 lautco 40100 cdleme50laut 40550 | 
| Copyright terms: Public domain | W3C validator |