Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islaut Structured version   Visualization version   GIF version

Theorem islaut 40107
Description: The predicate "is a lattice automorphism". (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lautset.b 𝐵 = (Base‘𝐾)
lautset.l = (le‘𝐾)
lautset.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
islaut (𝐾𝐴 → (𝐹𝐼 ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐼(𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem islaut
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lautset.b . . . 4 𝐵 = (Base‘𝐾)
2 lautset.l . . . 4 = (le‘𝐾)
3 lautset.i . . . 4 𝐼 = (LAut‘𝐾)
41, 2, 3lautset 40106 . . 3 (𝐾𝐴𝐼 = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})
54eleq2d 2821 . 2 (𝐾𝐴 → (𝐹𝐼𝐹 ∈ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))}))
6 f1of 6823 . . . . 5 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
71fvexi 6895 . . . . 5 𝐵 ∈ V
8 fex 7223 . . . . 5 ((𝐹:𝐵𝐵𝐵 ∈ V) → 𝐹 ∈ V)
96, 7, 8sylancl 586 . . . 4 (𝐹:𝐵1-1-onto𝐵𝐹 ∈ V)
109adantr 480 . . 3 ((𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦))) → 𝐹 ∈ V)
11 f1oeq1 6811 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐵1-1-onto𝐵𝐹:𝐵1-1-onto𝐵))
12 fveq1 6880 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
13 fveq1 6880 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1412, 13breq12d 5137 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦) ↔ (𝐹𝑥) (𝐹𝑦)))
1514bibi2d 342 . . . . 5 (𝑓 = 𝐹 → ((𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)) ↔ (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦))))
16152ralbidv 3209 . . . 4 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦))))
1711, 16anbi12d 632 . . 3 (𝑓 = 𝐹 → ((𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦))) ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))))
1810, 17elab3 3670 . 2 (𝐹 ∈ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))} ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦))))
195, 18bitrdi 287 1 (𝐾𝐴 → (𝐹𝐼 ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  wral 3052  Vcvv 3464   class class class wbr 5124  wf 6532  1-1-ontowf1o 6535  cfv 6536  Basecbs 17233  lecple 17283  LAutclaut 40009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-laut 40013
This theorem is referenced by:  lautle  40108  laut1o  40109  lautcnv  40114  idlaut  40120  lautco  40121  cdleme50laut  40571
  Copyright terms: Public domain W3C validator