| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islaut | Structured version Visualization version GIF version | ||
| Description: The predicate "is a lattice automorphism". (Contributed by NM, 11-May-2012.) |
| Ref | Expression |
|---|---|
| lautset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lautset.l | ⊢ ≤ = (le‘𝐾) |
| lautset.i | ⊢ 𝐼 = (LAut‘𝐾) |
| Ref | Expression |
|---|---|
| islaut | ⊢ (𝐾 ∈ 𝐴 → (𝐹 ∈ 𝐼 ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lautset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lautset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | lautset.i | . . . 4 ⊢ 𝐼 = (LAut‘𝐾) | |
| 4 | 1, 2, 3 | lautset 40120 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝐼 = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))}) |
| 5 | 4 | eleq2d 2817 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝐹 ∈ 𝐼 ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))})) |
| 6 | f1of 6763 | . . . . 5 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵⟶𝐵) | |
| 7 | 1 | fvexi 6836 | . . . . 5 ⊢ 𝐵 ∈ V |
| 8 | fex 7160 | . . . . 5 ⊢ ((𝐹:𝐵⟶𝐵 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
| 9 | 6, 7, 8 | sylancl 586 | . . . 4 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹 ∈ V) |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) → 𝐹 ∈ V) |
| 11 | f1oeq1 6751 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝐵–1-1-onto→𝐵 ↔ 𝐹:𝐵–1-1-onto→𝐵)) | |
| 12 | fveq1 6821 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 13 | fveq1 6821 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
| 14 | 12, 13 | breq12d 5104 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ≤ (𝑓‘𝑦) ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 15 | 14 | bibi2d 342 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)) ↔ (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)))) |
| 16 | 15 | 2ralbidv 3196 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)))) |
| 17 | 11, 16 | anbi12d 632 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦))) ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) |
| 18 | 10, 17 | elab3 3642 | . 2 ⊢ (𝐹 ∈ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑓‘𝑥) ≤ (𝑓‘𝑦)))} ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)))) |
| 19 | 5, 18 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐴 → (𝐹 ∈ 𝐼 ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 Vcvv 3436 class class class wbr 5091 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 Basecbs 17117 lecple 17165 LAutclaut 40023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-laut 40027 |
| This theorem is referenced by: lautle 40122 laut1o 40123 lautcnv 40128 idlaut 40134 lautco 40135 cdleme50laut 40585 |
| Copyright terms: Public domain | W3C validator |