| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ispsubsp | Structured version Visualization version GIF version | ||
| Description: The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011.) |
| Ref | Expression |
|---|---|
| psubspset.l | ⊢ ≤ = (le‘𝐾) |
| psubspset.j | ⊢ ∨ = (join‘𝐾) |
| psubspset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| psubspset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| Ref | Expression |
|---|---|
| ispsubsp | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubspset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | psubspset.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | psubspset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | psubspset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 5 | 1, 2, 3, 4 | psubspset 39768 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝑆 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥))}) |
| 6 | 5 | eleq2d 2821 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ 𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥))})) |
| 7 | 3 | fvexi 6895 | . . . . 5 ⊢ 𝐴 ∈ V |
| 8 | 7 | ssex 5296 | . . . 4 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ∈ V) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)) → 𝑋 ∈ V) |
| 10 | sseq1 3989 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
| 11 | eleq2 2824 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑟 ∈ 𝑥 ↔ 𝑟 ∈ 𝑋)) | |
| 12 | 11 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
| 13 | 12 | ralbidv 3164 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
| 14 | 13 | raleqbi1dv 3321 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
| 15 | 14 | raleqbi1dv 3321 | . . . 4 ⊢ (𝑥 = 𝑋 → (∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
| 16 | 10, 15 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥)) ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)))) |
| 17 | 9, 16 | elab3 3670 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥))} ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
| 18 | 6, 17 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 Vcvv 3464 ⊆ wss 3931 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 lecple 17283 joincjn 18328 Atomscatm 39286 PSubSpcpsubsp 39520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-psubsp 39527 |
| This theorem is referenced by: ispsubsp2 39770 0psubN 39773 snatpsubN 39774 linepsubN 39776 atpsubN 39777 psubssat 39778 pmapsub 39792 pclclN 39915 pclfinN 39924 |
| Copyright terms: Public domain | W3C validator |