|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ispsubsp | Structured version Visualization version GIF version | ||
| Description: The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| psubspset.l | ⊢ ≤ = (le‘𝐾) | 
| psubspset.j | ⊢ ∨ = (join‘𝐾) | 
| psubspset.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| psubspset.s | ⊢ 𝑆 = (PSubSp‘𝐾) | 
| Ref | Expression | 
|---|---|
| ispsubsp | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | psubspset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | psubspset.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | psubspset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | psubspset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 5 | 1, 2, 3, 4 | psubspset 39746 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝑆 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥))}) | 
| 6 | 5 | eleq2d 2827 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ 𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥))})) | 
| 7 | 3 | fvexi 6920 | . . . . 5 ⊢ 𝐴 ∈ V | 
| 8 | 7 | ssex 5321 | . . . 4 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ∈ V) | 
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)) → 𝑋 ∈ V) | 
| 10 | sseq1 4009 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
| 11 | eleq2 2830 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑟 ∈ 𝑥 ↔ 𝑟 ∈ 𝑋)) | |
| 12 | 11 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) | 
| 13 | 12 | ralbidv 3178 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) | 
| 14 | 13 | raleqbi1dv 3338 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) | 
| 15 | 14 | raleqbi1dv 3338 | . . . 4 ⊢ (𝑥 = 𝑋 → (∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) | 
| 16 | 10, 15 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥)) ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)))) | 
| 17 | 9, 16 | elab3 3686 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥))} ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) | 
| 18 | 6, 17 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 Vcvv 3480 ⊆ wss 3951 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 lecple 17304 joincjn 18357 Atomscatm 39264 PSubSpcpsubsp 39498 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-psubsp 39505 | 
| This theorem is referenced by: ispsubsp2 39748 0psubN 39751 snatpsubN 39752 linepsubN 39754 atpsubN 39755 psubssat 39756 pmapsub 39770 pclclN 39893 pclfinN 39902 | 
| Copyright terms: Public domain | W3C validator |