Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubsp Structured version   Visualization version   GIF version

Theorem ispsubsp 39769
Description: The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
ispsubsp (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋))))
Distinct variable groups:   𝐴,𝑟   𝑞,𝑝,𝑟,𝐾   𝑋,𝑝,𝑞,𝑟
Allowed substitution hints:   𝐴(𝑞,𝑝)   𝐷(𝑟,𝑞,𝑝)   𝑆(𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)

Proof of Theorem ispsubsp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psubspset.l . . . 4 = (le‘𝐾)
2 psubspset.j . . . 4 = (join‘𝐾)
3 psubspset.a . . . 4 𝐴 = (Atoms‘𝐾)
4 psubspset.s . . . 4 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4psubspset 39768 . . 3 (𝐾𝐷𝑆 = {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥))})
65eleq2d 2821 . 2 (𝐾𝐷 → (𝑋𝑆𝑋 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥))}))
73fvexi 6895 . . . . 5 𝐴 ∈ V
87ssex 5296 . . . 4 (𝑋𝐴𝑋 ∈ V)
98adantr 480 . . 3 ((𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)) → 𝑋 ∈ V)
10 sseq1 3989 . . . 4 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
11 eleq2 2824 . . . . . . . 8 (𝑥 = 𝑋 → (𝑟𝑥𝑟𝑋))
1211imbi2d 340 . . . . . . 7 (𝑥 = 𝑋 → ((𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1312ralbidv 3164 . . . . . 6 (𝑥 = 𝑋 → (∀𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ ∀𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1413raleqbi1dv 3321 . . . . 5 (𝑥 = 𝑋 → (∀𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ ∀𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1514raleqbi1dv 3321 . . . 4 (𝑥 = 𝑋 → (∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1610, 15anbi12d 632 . . 3 (𝑥 = 𝑋 → ((𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥)) ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋))))
179, 16elab3 3670 . 2 (𝑋 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥))} ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
186, 17bitrdi 287 1 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  wral 3052  Vcvv 3464  wss 3931   class class class wbr 5124  cfv 6536  (class class class)co 7410  lecple 17283  joincjn 18328  Atomscatm 39286  PSubSpcpsubsp 39520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-psubsp 39527
This theorem is referenced by:  ispsubsp2  39770  0psubN  39773  snatpsubN  39774  linepsubN  39776  atpsubN  39777  psubssat  39778  pmapsub  39792  pclclN  39915  pclfinN  39924
  Copyright terms: Public domain W3C validator