Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubsp Structured version   Visualization version   GIF version

Theorem ispsubsp 39783
Description: The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
ispsubsp (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋))))
Distinct variable groups:   𝐴,𝑟   𝑞,𝑝,𝑟,𝐾   𝑋,𝑝,𝑞,𝑟
Allowed substitution hints:   𝐴(𝑞,𝑝)   𝐷(𝑟,𝑞,𝑝)   𝑆(𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)

Proof of Theorem ispsubsp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psubspset.l . . . 4 = (le‘𝐾)
2 psubspset.j . . . 4 = (join‘𝐾)
3 psubspset.a . . . 4 𝐴 = (Atoms‘𝐾)
4 psubspset.s . . . 4 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4psubspset 39782 . . 3 (𝐾𝐷𝑆 = {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥))})
65eleq2d 2817 . 2 (𝐾𝐷 → (𝑋𝑆𝑋 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥))}))
73fvexi 6836 . . . . 5 𝐴 ∈ V
87ssex 5259 . . . 4 (𝑋𝐴𝑋 ∈ V)
98adantr 480 . . 3 ((𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)) → 𝑋 ∈ V)
10 sseq1 3960 . . . 4 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
11 eleq2 2820 . . . . . . . 8 (𝑥 = 𝑋 → (𝑟𝑥𝑟𝑋))
1211imbi2d 340 . . . . . . 7 (𝑥 = 𝑋 → ((𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1312ralbidv 3155 . . . . . 6 (𝑥 = 𝑋 → (∀𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ ∀𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1413raleqbi1dv 3304 . . . . 5 (𝑥 = 𝑋 → (∀𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ ∀𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1514raleqbi1dv 3304 . . . 4 (𝑥 = 𝑋 → (∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1610, 15anbi12d 632 . . 3 (𝑥 = 𝑋 → ((𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥)) ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋))))
179, 16elab3 3642 . 2 (𝑋 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥))} ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
186, 17bitrdi 287 1 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047  Vcvv 3436  wss 3902   class class class wbr 5091  cfv 6481  (class class class)co 7346  lecple 17165  joincjn 18214  Atomscatm 39301  PSubSpcpsubsp 39534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-psubsp 39541
This theorem is referenced by:  ispsubsp2  39784  0psubN  39787  snatpsubN  39788  linepsubN  39790  atpsubN  39791  psubssat  39792  pmapsub  39806  pclclN  39929  pclfinN  39938
  Copyright terms: Public domain W3C validator