Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubsp Structured version   Visualization version   GIF version

Theorem ispsubsp 39739
Description: The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
ispsubsp (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋))))
Distinct variable groups:   𝐴,𝑟   𝑞,𝑝,𝑟,𝐾   𝑋,𝑝,𝑞,𝑟
Allowed substitution hints:   𝐴(𝑞,𝑝)   𝐷(𝑟,𝑞,𝑝)   𝑆(𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)

Proof of Theorem ispsubsp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psubspset.l . . . 4 = (le‘𝐾)
2 psubspset.j . . . 4 = (join‘𝐾)
3 psubspset.a . . . 4 𝐴 = (Atoms‘𝐾)
4 psubspset.s . . . 4 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4psubspset 39738 . . 3 (𝐾𝐷𝑆 = {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥))})
65eleq2d 2814 . 2 (𝐾𝐷 → (𝑋𝑆𝑋 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥))}))
73fvexi 6872 . . . . 5 𝐴 ∈ V
87ssex 5276 . . . 4 (𝑋𝐴𝑋 ∈ V)
98adantr 480 . . 3 ((𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)) → 𝑋 ∈ V)
10 sseq1 3972 . . . 4 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
11 eleq2 2817 . . . . . . . 8 (𝑥 = 𝑋 → (𝑟𝑥𝑟𝑋))
1211imbi2d 340 . . . . . . 7 (𝑥 = 𝑋 → ((𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1312ralbidv 3156 . . . . . 6 (𝑥 = 𝑋 → (∀𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ ∀𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1413raleqbi1dv 3311 . . . . 5 (𝑥 = 𝑋 → (∀𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ ∀𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1514raleqbi1dv 3311 . . . 4 (𝑥 = 𝑋 → (∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1610, 15anbi12d 632 . . 3 (𝑥 = 𝑋 → ((𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥)) ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋))))
179, 16elab3 3653 . 2 (𝑋 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥))} ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
186, 17bitrdi 287 1 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3447  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  lecple 17227  joincjn 18272  Atomscatm 39256  PSubSpcpsubsp 39490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-psubsp 39497
This theorem is referenced by:  ispsubsp2  39740  0psubN  39743  snatpsubN  39744  linepsubN  39746  atpsubN  39747  psubssat  39748  pmapsub  39762  pclclN  39885  pclfinN  39894
  Copyright terms: Public domain W3C validator