Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubsp Structured version   Visualization version   GIF version

Theorem ispsubsp 38611
Description: The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
psubspset.l ≀ = (leβ€˜πΎ)
psubspset.j ∨ = (joinβ€˜πΎ)
psubspset.a 𝐴 = (Atomsβ€˜πΎ)
psubspset.s 𝑆 = (PSubSpβ€˜πΎ)
Assertion
Ref Expression
ispsubsp (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑆 ↔ (𝑋 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑋 βˆ€π‘ž ∈ 𝑋 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑋))))
Distinct variable groups:   𝐴,π‘Ÿ   π‘ž,𝑝,π‘Ÿ,𝐾   𝑋,𝑝,π‘ž,π‘Ÿ
Allowed substitution hints:   𝐴(π‘ž,𝑝)   𝐷(π‘Ÿ,π‘ž,𝑝)   𝑆(π‘Ÿ,π‘ž,𝑝)   ∨ (π‘Ÿ,π‘ž,𝑝)   ≀ (π‘Ÿ,π‘ž,𝑝)

Proof of Theorem ispsubsp
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 psubspset.l . . . 4 ≀ = (leβ€˜πΎ)
2 psubspset.j . . . 4 ∨ = (joinβ€˜πΎ)
3 psubspset.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
4 psubspset.s . . . 4 𝑆 = (PSubSpβ€˜πΎ)
51, 2, 3, 4psubspset 38610 . . 3 (𝐾 ∈ 𝐷 β†’ 𝑆 = {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘ ∈ π‘₯ βˆ€π‘ž ∈ π‘₯ βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ π‘₯))})
65eleq2d 2819 . 2 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑆 ↔ 𝑋 ∈ {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘ ∈ π‘₯ βˆ€π‘ž ∈ π‘₯ βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ π‘₯))}))
73fvexi 6905 . . . . 5 𝐴 ∈ V
87ssex 5321 . . . 4 (𝑋 βŠ† 𝐴 β†’ 𝑋 ∈ V)
98adantr 481 . . 3 ((𝑋 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑋 βˆ€π‘ž ∈ 𝑋 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑋)) β†’ 𝑋 ∈ V)
10 sseq1 4007 . . . 4 (π‘₯ = 𝑋 β†’ (π‘₯ βŠ† 𝐴 ↔ 𝑋 βŠ† 𝐴))
11 eleq2 2822 . . . . . . . 8 (π‘₯ = 𝑋 β†’ (π‘Ÿ ∈ π‘₯ ↔ π‘Ÿ ∈ 𝑋))
1211imbi2d 340 . . . . . . 7 (π‘₯ = 𝑋 β†’ ((π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ π‘₯) ↔ (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑋)))
1312ralbidv 3177 . . . . . 6 (π‘₯ = 𝑋 β†’ (βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ π‘₯) ↔ βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑋)))
1413raleqbi1dv 3333 . . . . 5 (π‘₯ = 𝑋 β†’ (βˆ€π‘ž ∈ π‘₯ βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ π‘₯) ↔ βˆ€π‘ž ∈ 𝑋 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑋)))
1514raleqbi1dv 3333 . . . 4 (π‘₯ = 𝑋 β†’ (βˆ€π‘ ∈ π‘₯ βˆ€π‘ž ∈ π‘₯ βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ π‘₯) ↔ βˆ€π‘ ∈ 𝑋 βˆ€π‘ž ∈ 𝑋 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑋)))
1610, 15anbi12d 631 . . 3 (π‘₯ = 𝑋 β†’ ((π‘₯ βŠ† 𝐴 ∧ βˆ€π‘ ∈ π‘₯ βˆ€π‘ž ∈ π‘₯ βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ π‘₯)) ↔ (𝑋 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑋 βˆ€π‘ž ∈ 𝑋 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑋))))
179, 16elab3 3676 . 2 (𝑋 ∈ {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ βˆ€π‘ ∈ π‘₯ βˆ€π‘ž ∈ π‘₯ βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ π‘₯))} ↔ (𝑋 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑋 βˆ€π‘ž ∈ 𝑋 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑋)))
186, 17bitrdi 286 1 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑆 ↔ (𝑋 βŠ† 𝐴 ∧ βˆ€π‘ ∈ 𝑋 βˆ€π‘ž ∈ 𝑋 βˆ€π‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ (𝑝 ∨ π‘ž) β†’ π‘Ÿ ∈ 𝑋))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  Vcvv 3474   βŠ† wss 3948   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  lecple 17203  joincjn 18263  Atomscatm 38128  PSubSpcpsubsp 38362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-psubsp 38369
This theorem is referenced by:  ispsubsp2  38612  0psubN  38615  snatpsubN  38616  linepsubN  38618  atpsubN  38619  psubssat  38620  pmapsub  38634  pclclN  38757  pclfinN  38766
  Copyright terms: Public domain W3C validator