| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ispsubsp | Structured version Visualization version GIF version | ||
| Description: The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011.) |
| Ref | Expression |
|---|---|
| psubspset.l | ⊢ ≤ = (le‘𝐾) |
| psubspset.j | ⊢ ∨ = (join‘𝐾) |
| psubspset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| psubspset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| Ref | Expression |
|---|---|
| ispsubsp | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubspset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | psubspset.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | psubspset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | psubspset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 5 | 1, 2, 3, 4 | psubspset 39745 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝑆 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥))}) |
| 6 | 5 | eleq2d 2815 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ 𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥))})) |
| 7 | 3 | fvexi 6875 | . . . . 5 ⊢ 𝐴 ∈ V |
| 8 | 7 | ssex 5279 | . . . 4 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ∈ V) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)) → 𝑋 ∈ V) |
| 10 | sseq1 3975 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
| 11 | eleq2 2818 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑟 ∈ 𝑥 ↔ 𝑟 ∈ 𝑋)) | |
| 12 | 11 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
| 13 | 12 | ralbidv 3157 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
| 14 | 13 | raleqbi1dv 3313 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
| 15 | 14 | raleqbi1dv 3313 | . . . 4 ⊢ (𝑥 = 𝑋 → (∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
| 16 | 10, 15 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥)) ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)))) |
| 17 | 9, 16 | elab3 3656 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥))} ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
| 18 | 6, 17 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 lecple 17234 joincjn 18279 Atomscatm 39263 PSubSpcpsubsp 39497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-psubsp 39504 |
| This theorem is referenced by: ispsubsp2 39747 0psubN 39750 snatpsubN 39751 linepsubN 39753 atpsubN 39754 psubssat 39755 pmapsub 39769 pclclN 39892 pclfinN 39901 |
| Copyright terms: Public domain | W3C validator |