![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispsubsp | Structured version Visualization version GIF version |
Description: The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011.) |
Ref | Expression |
---|---|
psubspset.l | ⊢ ≤ = (le‘𝐾) |
psubspset.j | ⊢ ∨ = (join‘𝐾) |
psubspset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
psubspset.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
Ref | Expression |
---|---|
ispsubsp | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psubspset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | psubspset.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | psubspset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | psubspset.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
5 | 1, 2, 3, 4 | psubspset 39701 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝑆 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥))}) |
6 | 5 | eleq2d 2830 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ 𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥))})) |
7 | 3 | fvexi 6934 | . . . . 5 ⊢ 𝐴 ∈ V |
8 | 7 | ssex 5339 | . . . 4 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ∈ V) |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)) → 𝑋 ∈ V) |
10 | sseq1 4034 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
11 | eleq2 2833 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑟 ∈ 𝑥 ↔ 𝑟 ∈ 𝑋)) | |
12 | 11 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
13 | 12 | ralbidv 3184 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
14 | 13 | raleqbi1dv 3346 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
15 | 14 | raleqbi1dv 3346 | . . . 4 ⊢ (𝑥 = 𝑋 → (∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥) ↔ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
16 | 10, 15 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥)) ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)))) |
17 | 9, 16 | elab3 3702 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝑥 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑥))} ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋))) |
18 | 6, 17 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑋 ∀𝑞 ∈ 𝑋 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 lecple 17318 joincjn 18381 Atomscatm 39219 PSubSpcpsubsp 39453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-psubsp 39460 |
This theorem is referenced by: ispsubsp2 39703 0psubN 39706 snatpsubN 39707 linepsubN 39709 atpsubN 39710 psubssat 39711 pmapsub 39725 pclclN 39848 pclfinN 39857 |
Copyright terms: Public domain | W3C validator |