Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubsp Structured version   Visualization version   GIF version

Theorem ispsubsp 37686
Description: The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
ispsubsp (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋))))
Distinct variable groups:   𝐴,𝑟   𝑞,𝑝,𝑟,𝐾   𝑋,𝑝,𝑞,𝑟
Allowed substitution hints:   𝐴(𝑞,𝑝)   𝐷(𝑟,𝑞,𝑝)   𝑆(𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)

Proof of Theorem ispsubsp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psubspset.l . . . 4 = (le‘𝐾)
2 psubspset.j . . . 4 = (join‘𝐾)
3 psubspset.a . . . 4 𝐴 = (Atoms‘𝐾)
4 psubspset.s . . . 4 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4psubspset 37685 . . 3 (𝐾𝐷𝑆 = {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥))})
65eleq2d 2824 . 2 (𝐾𝐷 → (𝑋𝑆𝑋 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥))}))
73fvexi 6770 . . . . 5 𝐴 ∈ V
87ssex 5240 . . . 4 (𝑋𝐴𝑋 ∈ V)
98adantr 480 . . 3 ((𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)) → 𝑋 ∈ V)
10 sseq1 3942 . . . 4 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
11 eleq2 2827 . . . . . . . 8 (𝑥 = 𝑋 → (𝑟𝑥𝑟𝑋))
1211imbi2d 340 . . . . . . 7 (𝑥 = 𝑋 → ((𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1312ralbidv 3120 . . . . . 6 (𝑥 = 𝑋 → (∀𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ ∀𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1413raleqbi1dv 3331 . . . . 5 (𝑥 = 𝑋 → (∀𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ ∀𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1514raleqbi1dv 3331 . . . 4 (𝑥 = 𝑋 → (∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥) ↔ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
1610, 15anbi12d 630 . . 3 (𝑥 = 𝑋 → ((𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥)) ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋))))
179, 16elab3 3610 . 2 (𝑋 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑝𝑥𝑞𝑥𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑥))} ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋)))
186, 17bitrdi 286 1 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝑋𝑞𝑋𝑟𝐴 (𝑟 (𝑝 𝑞) → 𝑟𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  Vcvv 3422  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  Atomscatm 37204  PSubSpcpsubsp 37437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-psubsp 37444
This theorem is referenced by:  ispsubsp2  37687  0psubN  37690  snatpsubN  37691  linepsubN  37693  atpsubN  37694  psubssat  37695  pmapsub  37709  pclclN  37832  pclfinN  37841
  Copyright terms: Public domain W3C validator