Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isline Structured version   Visualization version   GIF version

Theorem isline 38605
Description: The predicate "is a line". (Contributed by NM, 19-Sep-2011.)
Hypotheses
Ref Expression
isline.l ≀ = (leβ€˜πΎ)
isline.j ∨ = (joinβ€˜πΎ)
isline.a 𝐴 = (Atomsβ€˜πΎ)
isline.n 𝑁 = (Linesβ€˜πΎ)
Assertion
Ref Expression
isline (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑁 ↔ βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)})))
Distinct variable groups:   π‘ž,𝑝,π‘Ÿ,𝐴   𝐾,𝑝,π‘ž,π‘Ÿ   𝑋,π‘ž,π‘Ÿ
Allowed substitution hints:   𝐷(π‘Ÿ,π‘ž,𝑝)   ∨ (π‘Ÿ,π‘ž,𝑝)   ≀ (π‘Ÿ,π‘ž,𝑝)   𝑁(π‘Ÿ,π‘ž,𝑝)   𝑋(𝑝)

Proof of Theorem isline
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 isline.l . . . 4 ≀ = (leβ€˜πΎ)
2 isline.j . . . 4 ∨ = (joinβ€˜πΎ)
3 isline.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
4 isline.n . . . 4 𝑁 = (Linesβ€˜πΎ)
51, 2, 3, 4lineset 38604 . . 3 (𝐾 ∈ 𝐷 β†’ 𝑁 = {π‘₯ ∣ βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ π‘₯ = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)})})
65eleq2d 2819 . 2 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑁 ↔ 𝑋 ∈ {π‘₯ ∣ βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ π‘₯ = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)})}))
73fvexi 6905 . . . . . . . 8 𝐴 ∈ V
87rabex 5332 . . . . . . 7 {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)} ∈ V
9 eleq1 2821 . . . . . . 7 (𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)} β†’ (𝑋 ∈ V ↔ {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)} ∈ V))
108, 9mpbiri 257 . . . . . 6 (𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)} β†’ 𝑋 ∈ V)
1110adantl 482 . . . . 5 ((π‘ž β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)}) β†’ 𝑋 ∈ V)
1211a1i 11 . . . 4 ((π‘ž ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) β†’ ((π‘ž β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)}) β†’ 𝑋 ∈ V))
1312rexlimivv 3199 . . 3 (βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)}) β†’ 𝑋 ∈ V)
14 eqeq1 2736 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯ = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)} ↔ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)}))
1514anbi2d 629 . . . 4 (π‘₯ = 𝑋 β†’ ((π‘ž β‰  π‘Ÿ ∧ π‘₯ = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)}) ↔ (π‘ž β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)})))
16152rexbidv 3219 . . 3 (π‘₯ = 𝑋 β†’ (βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ π‘₯ = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)}) ↔ βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)})))
1713, 16elab3 3676 . 2 (𝑋 ∈ {π‘₯ ∣ βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ π‘₯ = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)})} ↔ βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)}))
186, 17bitrdi 286 1 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑁 ↔ βˆƒπ‘ž ∈ 𝐴 βˆƒπ‘Ÿ ∈ 𝐴 (π‘ž β‰  π‘Ÿ ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≀ (π‘ž ∨ π‘Ÿ)})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709   β‰  wne 2940  βˆƒwrex 3070  {crab 3432  Vcvv 3474   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  lecple 17203  joincjn 18263  Atomscatm 38128  Linesclines 38360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-lines 38367
This theorem is referenced by:  islinei  38606  linepsubN  38618  isline2  38640
  Copyright terms: Public domain W3C validator