| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isline | Structured version Visualization version GIF version | ||
| Description: The predicate "is a line". (Contributed by NM, 19-Sep-2011.) |
| Ref | Expression |
|---|---|
| isline.l | ⊢ ≤ = (le‘𝐾) |
| isline.j | ⊢ ∨ = (join‘𝐾) |
| isline.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| isline.n | ⊢ 𝑁 = (Lines‘𝐾) |
| Ref | Expression |
|---|---|
| isline | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isline.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | isline.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | isline.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | isline.n | . . . 4 ⊢ 𝑁 = (Lines‘𝐾) | |
| 5 | 1, 2, 3, 4 | lineset 39762 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝑁 = {𝑥 ∣ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})}) |
| 6 | 5 | eleq2d 2821 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})})) |
| 7 | 3 | fvexi 6895 | . . . . . . . 8 ⊢ 𝐴 ∈ V |
| 8 | 7 | rabex 5314 | . . . . . . 7 ⊢ {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} ∈ V |
| 9 | eleq1 2823 | . . . . . . 7 ⊢ (𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} → (𝑋 ∈ V ↔ {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} ∈ V)) | |
| 10 | 8, 9 | mpbiri 258 | . . . . . 6 ⊢ (𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} → 𝑋 ∈ V) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) → 𝑋 ∈ V) |
| 12 | 11 | a1i 11 | . . . 4 ⊢ ((𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → ((𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) → 𝑋 ∈ V)) |
| 13 | 12 | rexlimivv 3187 | . . 3 ⊢ (∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) → 𝑋 ∈ V) |
| 14 | eqeq1 2740 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} ↔ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})) | |
| 15 | 14 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) ↔ (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
| 16 | 15 | 2rexbidv 3210 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
| 17 | 13, 16 | elab3 3670 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})} ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})) |
| 18 | 6, 17 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ≠ wne 2933 ∃wrex 3061 {crab 3420 Vcvv 3464 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 lecple 17283 joincjn 18328 Atomscatm 39286 Linesclines 39518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-lines 39525 |
| This theorem is referenced by: islinei 39764 linepsubN 39776 isline2 39798 |
| Copyright terms: Public domain | W3C validator |