Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isline Structured version   Visualization version   GIF version

Theorem isline 39733
Description: The predicate "is a line". (Contributed by NM, 19-Sep-2011.)
Hypotheses
Ref Expression
isline.l = (le‘𝐾)
isline.j = (join‘𝐾)
isline.a 𝐴 = (Atoms‘𝐾)
isline.n 𝑁 = (Lines‘𝐾)
Assertion
Ref Expression
isline (𝐾𝐷 → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
Distinct variable groups:   𝑞,𝑝,𝑟,𝐴   𝐾,𝑝,𝑞,𝑟   𝑋,𝑞,𝑟
Allowed substitution hints:   𝐷(𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   𝑁(𝑟,𝑞,𝑝)   𝑋(𝑝)

Proof of Theorem isline
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isline.l . . . 4 = (le‘𝐾)
2 isline.j . . . 4 = (join‘𝐾)
3 isline.a . . . 4 𝐴 = (Atoms‘𝐾)
4 isline.n . . . 4 𝑁 = (Lines‘𝐾)
51, 2, 3, 4lineset 39732 . . 3 (𝐾𝐷𝑁 = {𝑥 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
65eleq2d 2814 . 2 (𝐾𝐷 → (𝑋𝑁𝑋 ∈ {𝑥 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)})}))
73fvexi 6872 . . . . . . . 8 𝐴 ∈ V
87rabex 5294 . . . . . . 7 {𝑝𝐴𝑝 (𝑞 𝑟)} ∈ V
9 eleq1 2816 . . . . . . 7 (𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)} → (𝑋 ∈ V ↔ {𝑝𝐴𝑝 (𝑞 𝑟)} ∈ V))
108, 9mpbiri 258 . . . . . 6 (𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)} → 𝑋 ∈ V)
1110adantl 481 . . . . 5 ((𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}) → 𝑋 ∈ V)
1211a1i 11 . . . 4 ((𝑞𝐴𝑟𝐴) → ((𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}) → 𝑋 ∈ V))
1312rexlimivv 3179 . . 3 (∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}) → 𝑋 ∈ V)
14 eqeq1 2733 . . . . 5 (𝑥 = 𝑋 → (𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)} ↔ 𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}))
1514anbi2d 630 . . . 4 (𝑥 = 𝑋 → ((𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)}) ↔ (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
16152rexbidv 3202 . . 3 (𝑥 = 𝑋 → (∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)}) ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
1713, 16elab3 3653 . 2 (𝑋 ∈ {𝑥 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)})} ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}))
186, 17bitrdi 287 1 (𝐾𝐷 → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wrex 3053  {crab 3405  Vcvv 3447   class class class wbr 5107  cfv 6511  (class class class)co 7387  lecple 17227  joincjn 18272  Atomscatm 39256  Linesclines 39488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-lines 39495
This theorem is referenced by:  islinei  39734  linepsubN  39746  isline2  39768
  Copyright terms: Public domain W3C validator