Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isline | Structured version Visualization version GIF version |
Description: The predicate "is a line". (Contributed by NM, 19-Sep-2011.) |
Ref | Expression |
---|---|
isline.l | ⊢ ≤ = (le‘𝐾) |
isline.j | ⊢ ∨ = (join‘𝐾) |
isline.a | ⊢ 𝐴 = (Atoms‘𝐾) |
isline.n | ⊢ 𝑁 = (Lines‘𝐾) |
Ref | Expression |
---|---|
isline | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isline.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | isline.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | isline.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | isline.n | . . . 4 ⊢ 𝑁 = (Lines‘𝐾) | |
5 | 1, 2, 3, 4 | lineset 37740 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝑁 = {𝑥 ∣ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})}) |
6 | 5 | eleq2d 2826 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})})) |
7 | 3 | fvexi 6783 | . . . . . . . 8 ⊢ 𝐴 ∈ V |
8 | 7 | rabex 5260 | . . . . . . 7 ⊢ {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} ∈ V |
9 | eleq1 2828 | . . . . . . 7 ⊢ (𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} → (𝑋 ∈ V ↔ {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} ∈ V)) | |
10 | 8, 9 | mpbiri 257 | . . . . . 6 ⊢ (𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} → 𝑋 ∈ V) |
11 | 10 | adantl 482 | . . . . 5 ⊢ ((𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) → 𝑋 ∈ V) |
12 | 11 | a1i 11 | . . . 4 ⊢ ((𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → ((𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) → 𝑋 ∈ V)) |
13 | 12 | rexlimivv 3223 | . . 3 ⊢ (∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) → 𝑋 ∈ V) |
14 | eqeq1 2744 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} ↔ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})) | |
15 | 14 | anbi2d 629 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) ↔ (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
16 | 15 | 2rexbidv 3231 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
17 | 13, 16 | elab3 3619 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})} ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})) |
18 | 6, 17 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 {cab 2717 ≠ wne 2945 ∃wrex 3067 {crab 3070 Vcvv 3431 class class class wbr 5079 ‘cfv 6431 (class class class)co 7269 lecple 16959 joincjn 18019 Atomscatm 37265 Linesclines 37496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-lines 37503 |
This theorem is referenced by: islinei 37742 linepsubN 37754 isline2 37776 |
Copyright terms: Public domain | W3C validator |