Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isline Structured version   Visualization version   GIF version

Theorem isline 37680
Description: The predicate "is a line". (Contributed by NM, 19-Sep-2011.)
Hypotheses
Ref Expression
isline.l = (le‘𝐾)
isline.j = (join‘𝐾)
isline.a 𝐴 = (Atoms‘𝐾)
isline.n 𝑁 = (Lines‘𝐾)
Assertion
Ref Expression
isline (𝐾𝐷 → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
Distinct variable groups:   𝑞,𝑝,𝑟,𝐴   𝐾,𝑝,𝑞,𝑟   𝑋,𝑞,𝑟
Allowed substitution hints:   𝐷(𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   𝑁(𝑟,𝑞,𝑝)   𝑋(𝑝)

Proof of Theorem isline
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isline.l . . . 4 = (le‘𝐾)
2 isline.j . . . 4 = (join‘𝐾)
3 isline.a . . . 4 𝐴 = (Atoms‘𝐾)
4 isline.n . . . 4 𝑁 = (Lines‘𝐾)
51, 2, 3, 4lineset 37679 . . 3 (𝐾𝐷𝑁 = {𝑥 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
65eleq2d 2824 . 2 (𝐾𝐷 → (𝑋𝑁𝑋 ∈ {𝑥 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)})}))
73fvexi 6770 . . . . . . . 8 𝐴 ∈ V
87rabex 5251 . . . . . . 7 {𝑝𝐴𝑝 (𝑞 𝑟)} ∈ V
9 eleq1 2826 . . . . . . 7 (𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)} → (𝑋 ∈ V ↔ {𝑝𝐴𝑝 (𝑞 𝑟)} ∈ V))
108, 9mpbiri 257 . . . . . 6 (𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)} → 𝑋 ∈ V)
1110adantl 481 . . . . 5 ((𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}) → 𝑋 ∈ V)
1211a1i 11 . . . 4 ((𝑞𝐴𝑟𝐴) → ((𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}) → 𝑋 ∈ V))
1312rexlimivv 3220 . . 3 (∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}) → 𝑋 ∈ V)
14 eqeq1 2742 . . . . 5 (𝑥 = 𝑋 → (𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)} ↔ 𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}))
1514anbi2d 628 . . . 4 (𝑥 = 𝑋 → ((𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)}) ↔ (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
16152rexbidv 3228 . . 3 (𝑥 = 𝑋 → (∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)}) ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
1713, 16elab3 3610 . 2 (𝑋 ∈ {𝑥 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)})} ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}))
186, 17bitrdi 286 1 (𝐾𝐷 → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wrex 3064  {crab 3067  Vcvv 3422   class class class wbr 5070  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  Atomscatm 37204  Linesclines 37435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-lines 37442
This theorem is referenced by:  islinei  37681  linepsubN  37693  isline2  37715
  Copyright terms: Public domain W3C validator