Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isline | Structured version Visualization version GIF version |
Description: The predicate "is a line". (Contributed by NM, 19-Sep-2011.) |
Ref | Expression |
---|---|
isline.l | ⊢ ≤ = (le‘𝐾) |
isline.j | ⊢ ∨ = (join‘𝐾) |
isline.a | ⊢ 𝐴 = (Atoms‘𝐾) |
isline.n | ⊢ 𝑁 = (Lines‘𝐾) |
Ref | Expression |
---|---|
isline | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isline.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | isline.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | isline.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | isline.n | . . . 4 ⊢ 𝑁 = (Lines‘𝐾) | |
5 | 1, 2, 3, 4 | lineset 37752 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝑁 = {𝑥 ∣ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})}) |
6 | 5 | eleq2d 2824 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})})) |
7 | 3 | fvexi 6788 | . . . . . . . 8 ⊢ 𝐴 ∈ V |
8 | 7 | rabex 5256 | . . . . . . 7 ⊢ {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} ∈ V |
9 | eleq1 2826 | . . . . . . 7 ⊢ (𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} → (𝑋 ∈ V ↔ {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} ∈ V)) | |
10 | 8, 9 | mpbiri 257 | . . . . . 6 ⊢ (𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} → 𝑋 ∈ V) |
11 | 10 | adantl 482 | . . . . 5 ⊢ ((𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) → 𝑋 ∈ V) |
12 | 11 | a1i 11 | . . . 4 ⊢ ((𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → ((𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) → 𝑋 ∈ V)) |
13 | 12 | rexlimivv 3221 | . . 3 ⊢ (∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) → 𝑋 ∈ V) |
14 | eqeq1 2742 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)} ↔ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})) | |
15 | 14 | anbi2d 629 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) ↔ (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
16 | 15 | 2rexbidv 3229 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}) ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
17 | 13, 16 | elab3 3617 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑥 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})} ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)})) |
18 | 6, 17 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑞 ≠ 𝑟 ∧ 𝑋 = {𝑝 ∈ 𝐴 ∣ 𝑝 ≤ (𝑞 ∨ 𝑟)}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ≠ wne 2943 ∃wrex 3065 {crab 3068 Vcvv 3432 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 lecple 16969 joincjn 18029 Atomscatm 37277 Linesclines 37508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-lines 37515 |
This theorem is referenced by: islinei 37754 linepsubN 37766 isline2 37788 |
Copyright terms: Public domain | W3C validator |