Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isline Structured version   Visualization version   GIF version

Theorem isline 37753
Description: The predicate "is a line". (Contributed by NM, 19-Sep-2011.)
Hypotheses
Ref Expression
isline.l = (le‘𝐾)
isline.j = (join‘𝐾)
isline.a 𝐴 = (Atoms‘𝐾)
isline.n 𝑁 = (Lines‘𝐾)
Assertion
Ref Expression
isline (𝐾𝐷 → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
Distinct variable groups:   𝑞,𝑝,𝑟,𝐴   𝐾,𝑝,𝑞,𝑟   𝑋,𝑞,𝑟
Allowed substitution hints:   𝐷(𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   𝑁(𝑟,𝑞,𝑝)   𝑋(𝑝)

Proof of Theorem isline
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isline.l . . . 4 = (le‘𝐾)
2 isline.j . . . 4 = (join‘𝐾)
3 isline.a . . . 4 𝐴 = (Atoms‘𝐾)
4 isline.n . . . 4 𝑁 = (Lines‘𝐾)
51, 2, 3, 4lineset 37752 . . 3 (𝐾𝐷𝑁 = {𝑥 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
65eleq2d 2824 . 2 (𝐾𝐷 → (𝑋𝑁𝑋 ∈ {𝑥 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)})}))
73fvexi 6788 . . . . . . . 8 𝐴 ∈ V
87rabex 5256 . . . . . . 7 {𝑝𝐴𝑝 (𝑞 𝑟)} ∈ V
9 eleq1 2826 . . . . . . 7 (𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)} → (𝑋 ∈ V ↔ {𝑝𝐴𝑝 (𝑞 𝑟)} ∈ V))
108, 9mpbiri 257 . . . . . 6 (𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)} → 𝑋 ∈ V)
1110adantl 482 . . . . 5 ((𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}) → 𝑋 ∈ V)
1211a1i 11 . . . 4 ((𝑞𝐴𝑟𝐴) → ((𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}) → 𝑋 ∈ V))
1312rexlimivv 3221 . . 3 (∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}) → 𝑋 ∈ V)
14 eqeq1 2742 . . . . 5 (𝑥 = 𝑋 → (𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)} ↔ 𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}))
1514anbi2d 629 . . . 4 (𝑥 = 𝑋 → ((𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)}) ↔ (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
16152rexbidv 3229 . . 3 (𝑥 = 𝑋 → (∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)}) ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
1713, 16elab3 3617 . 2 (𝑋 ∈ {𝑥 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑥 = {𝑝𝐴𝑝 (𝑞 𝑟)})} ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)}))
186, 17bitrdi 287 1 (𝐾𝐷 → (𝑋𝑁 ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑋 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wrex 3065  {crab 3068  Vcvv 3432   class class class wbr 5074  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  Atomscatm 37277  Linesclines 37508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-lines 37515
This theorem is referenced by:  islinei  37754  linepsubN  37766  isline2  37788
  Copyright terms: Public domain W3C validator