MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswrd Structured version   Visualization version   GIF version

Theorem iswrd 14564
Description: Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
Assertion
Ref Expression
iswrd (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
Distinct variable groups:   𝑆,𝑙   𝑊,𝑙

Proof of Theorem iswrd
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-word 14563 . . 3 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
21eleq2i 2836 . 2 (𝑊 ∈ Word 𝑆𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆})
3 ovex 7481 . . . . 5 (0..^𝑙) ∈ V
4 fex 7263 . . . . 5 ((𝑊:(0..^𝑙)⟶𝑆 ∧ (0..^𝑙) ∈ V) → 𝑊 ∈ V)
53, 4mpan2 690 . . . 4 (𝑊:(0..^𝑙)⟶𝑆𝑊 ∈ V)
65rexlimivw 3157 . . 3 (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆𝑊 ∈ V)
7 feq1 6728 . . . 4 (𝑤 = 𝑊 → (𝑤:(0..^𝑙)⟶𝑆𝑊:(0..^𝑙)⟶𝑆))
87rexbidv 3185 . . 3 (𝑤 = 𝑊 → (∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆))
96, 8elab3 3702 . 2 (𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
102, 9bitri 275 1 (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  Vcvv 3488  wf 6569  (class class class)co 7448  0cc0 11184  0cn0 12553  ..^cfzo 13711  Word cword 14562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-word 14563
This theorem is referenced by:  iswrdi  14566  wrdf  14567  cshword  14839  motcgrg  28570
  Copyright terms: Public domain W3C validator