| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iswrd | Structured version Visualization version GIF version | ||
| Description: Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.) |
| Ref | Expression |
|---|---|
| iswrd | ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word 14479 | . . 3 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ 𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}) |
| 3 | ovex 7420 | . . . . 5 ⊢ (0..^𝑙) ∈ V | |
| 4 | fex 7200 | . . . . 5 ⊢ ((𝑊:(0..^𝑙)⟶𝑆 ∧ (0..^𝑙) ∈ V) → 𝑊 ∈ V) | |
| 5 | 3, 4 | mpan2 691 | . . . 4 ⊢ (𝑊:(0..^𝑙)⟶𝑆 → 𝑊 ∈ V) |
| 6 | 5 | rexlimivw 3130 | . . 3 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊 ∈ V) |
| 7 | feq1 6666 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤:(0..^𝑙)⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) | |
| 8 | 7 | rexbidv 3157 | . . 3 ⊢ (𝑤 = 𝑊 → (∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)) |
| 9 | 6, 8 | elab3 3653 | . 2 ⊢ (𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| 10 | 2, 9 | bitri 275 | 1 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3447 ⟶wf 6507 (class class class)co 7387 0cc0 11068 ℕ0cn0 12442 ..^cfzo 13615 Word cword 14478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-word 14479 |
| This theorem is referenced by: iswrdi 14482 wrdf 14483 cshword 14756 motcgrg 28471 |
| Copyright terms: Public domain | W3C validator |