Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iswrd | Structured version Visualization version GIF version |
Description: Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.) |
Ref | Expression |
---|---|
iswrd | ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-word 14218 | . . 3 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ 𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}) |
3 | ovex 7308 | . . . . 5 ⊢ (0..^𝑙) ∈ V | |
4 | fex 7102 | . . . . 5 ⊢ ((𝑊:(0..^𝑙)⟶𝑆 ∧ (0..^𝑙) ∈ V) → 𝑊 ∈ V) | |
5 | 3, 4 | mpan2 688 | . . . 4 ⊢ (𝑊:(0..^𝑙)⟶𝑆 → 𝑊 ∈ V) |
6 | 5 | rexlimivw 3211 | . . 3 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊 ∈ V) |
7 | feq1 6581 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤:(0..^𝑙)⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) | |
8 | 7 | rexbidv 3226 | . . 3 ⊢ (𝑤 = 𝑊 → (∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)) |
9 | 6, 8 | elab3 3617 | . 2 ⊢ (𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
10 | 2, 9 | bitri 274 | 1 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 Vcvv 3432 ⟶wf 6429 (class class class)co 7275 0cc0 10871 ℕ0cn0 12233 ..^cfzo 13382 Word cword 14217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-word 14218 |
This theorem is referenced by: iswrdi 14221 wrdf 14222 cshword 14504 motcgrg 26905 |
Copyright terms: Public domain | W3C validator |