| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iswrd | Structured version Visualization version GIF version | ||
| Description: Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.) |
| Ref | Expression |
|---|---|
| iswrd | ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word 14537 | . . 3 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
| 2 | 1 | eleq2i 2827 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ 𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}) |
| 3 | ovex 7443 | . . . . 5 ⊢ (0..^𝑙) ∈ V | |
| 4 | fex 7223 | . . . . 5 ⊢ ((𝑊:(0..^𝑙)⟶𝑆 ∧ (0..^𝑙) ∈ V) → 𝑊 ∈ V) | |
| 5 | 3, 4 | mpan2 691 | . . . 4 ⊢ (𝑊:(0..^𝑙)⟶𝑆 → 𝑊 ∈ V) |
| 6 | 5 | rexlimivw 3138 | . . 3 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊 ∈ V) |
| 7 | feq1 6691 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤:(0..^𝑙)⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) | |
| 8 | 7 | rexbidv 3165 | . . 3 ⊢ (𝑤 = 𝑊 → (∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)) |
| 9 | 6, 8 | elab3 3670 | . 2 ⊢ (𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| 10 | 2, 9 | bitri 275 | 1 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 Vcvv 3464 ⟶wf 6532 (class class class)co 7410 0cc0 11134 ℕ0cn0 12506 ..^cfzo 13676 Word cword 14536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-word 14537 |
| This theorem is referenced by: iswrdi 14540 wrdf 14541 cshword 14814 motcgrg 28528 |
| Copyright terms: Public domain | W3C validator |