MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswrd Structured version   Visualization version   GIF version

Theorem iswrd 14538
Description: Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
Assertion
Ref Expression
iswrd (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
Distinct variable groups:   𝑆,𝑙   𝑊,𝑙

Proof of Theorem iswrd
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-word 14537 . . 3 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
21eleq2i 2827 . 2 (𝑊 ∈ Word 𝑆𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆})
3 ovex 7443 . . . . 5 (0..^𝑙) ∈ V
4 fex 7223 . . . . 5 ((𝑊:(0..^𝑙)⟶𝑆 ∧ (0..^𝑙) ∈ V) → 𝑊 ∈ V)
53, 4mpan2 691 . . . 4 (𝑊:(0..^𝑙)⟶𝑆𝑊 ∈ V)
65rexlimivw 3138 . . 3 (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆𝑊 ∈ V)
7 feq1 6691 . . . 4 (𝑤 = 𝑊 → (𝑤:(0..^𝑙)⟶𝑆𝑊:(0..^𝑙)⟶𝑆))
87rexbidv 3165 . . 3 (𝑤 = 𝑊 → (∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆))
96, 8elab3 3670 . 2 (𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
102, 9bitri 275 1 (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  {cab 2714  wrex 3061  Vcvv 3464  wf 6532  (class class class)co 7410  0cc0 11134  0cn0 12506  ..^cfzo 13676  Word cword 14536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-word 14537
This theorem is referenced by:  iswrdi  14540  wrdf  14541  cshword  14814  motcgrg  28528
  Copyright terms: Public domain W3C validator