Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iswrd | Structured version Visualization version GIF version |
Description: Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.) |
Ref | Expression |
---|---|
iswrd | ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-word 14146 | . . 3 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ 𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}) |
3 | ovex 7288 | . . . . 5 ⊢ (0..^𝑙) ∈ V | |
4 | fex 7084 | . . . . 5 ⊢ ((𝑊:(0..^𝑙)⟶𝑆 ∧ (0..^𝑙) ∈ V) → 𝑊 ∈ V) | |
5 | 3, 4 | mpan2 687 | . . . 4 ⊢ (𝑊:(0..^𝑙)⟶𝑆 → 𝑊 ∈ V) |
6 | 5 | rexlimivw 3210 | . . 3 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊 ∈ V) |
7 | feq1 6565 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤:(0..^𝑙)⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) | |
8 | 7 | rexbidv 3225 | . . 3 ⊢ (𝑤 = 𝑊 → (∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)) |
9 | 6, 8 | elab3 3610 | . 2 ⊢ (𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
10 | 2, 9 | bitri 274 | 1 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 Vcvv 3422 ⟶wf 6414 (class class class)co 7255 0cc0 10802 ℕ0cn0 12163 ..^cfzo 13311 Word cword 14145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-word 14146 |
This theorem is referenced by: iswrdi 14149 wrdf 14150 cshword 14432 motcgrg 26809 |
Copyright terms: Public domain | W3C validator |