MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswrd Structured version   Visualization version   GIF version

Theorem iswrd 14219
Description: Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
Assertion
Ref Expression
iswrd (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
Distinct variable groups:   𝑆,𝑙   𝑊,𝑙

Proof of Theorem iswrd
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-word 14218 . . 3 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
21eleq2i 2830 . 2 (𝑊 ∈ Word 𝑆𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆})
3 ovex 7308 . . . . 5 (0..^𝑙) ∈ V
4 fex 7102 . . . . 5 ((𝑊:(0..^𝑙)⟶𝑆 ∧ (0..^𝑙) ∈ V) → 𝑊 ∈ V)
53, 4mpan2 688 . . . 4 (𝑊:(0..^𝑙)⟶𝑆𝑊 ∈ V)
65rexlimivw 3211 . . 3 (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆𝑊 ∈ V)
7 feq1 6581 . . . 4 (𝑤 = 𝑊 → (𝑤:(0..^𝑙)⟶𝑆𝑊:(0..^𝑙)⟶𝑆))
87rexbidv 3226 . . 3 (𝑤 = 𝑊 → (∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆))
96, 8elab3 3617 . 2 (𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
102, 9bitri 274 1 (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  Vcvv 3432  wf 6429  (class class class)co 7275  0cc0 10871  0cn0 12233  ..^cfzo 13382  Word cword 14217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-word 14218
This theorem is referenced by:  iswrdi  14221  wrdf  14222  cshword  14504  motcgrg  26905
  Copyright terms: Public domain W3C validator