MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswrd Structured version   Visualization version   GIF version

Theorem iswrd 14422
Description: Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
Assertion
Ref Expression
iswrd (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
Distinct variable groups:   𝑆,𝑙   𝑊,𝑙

Proof of Theorem iswrd
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-word 14421 . . 3 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
21eleq2i 2823 . 2 (𝑊 ∈ Word 𝑆𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆})
3 ovex 7379 . . . . 5 (0..^𝑙) ∈ V
4 fex 7160 . . . . 5 ((𝑊:(0..^𝑙)⟶𝑆 ∧ (0..^𝑙) ∈ V) → 𝑊 ∈ V)
53, 4mpan2 691 . . . 4 (𝑊:(0..^𝑙)⟶𝑆𝑊 ∈ V)
65rexlimivw 3129 . . 3 (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆𝑊 ∈ V)
7 feq1 6629 . . . 4 (𝑤 = 𝑊 → (𝑤:(0..^𝑙)⟶𝑆𝑊:(0..^𝑙)⟶𝑆))
87rexbidv 3156 . . 3 (𝑤 = 𝑊 → (∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆))
96, 8elab3 3642 . 2 (𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
102, 9bitri 275 1 (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  wf 6477  (class class class)co 7346  0cc0 11006  0cn0 12381  ..^cfzo 13554  Word cword 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-word 14421
This theorem is referenced by:  iswrdi  14424  wrdf  14425  cshword  14698  motcgrg  28523
  Copyright terms: Public domain W3C validator