![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iswrd | Structured version Visualization version GIF version |
Description: Property of being a word over a set with a quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.) |
Ref | Expression |
---|---|
iswrd | ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-word 13575 | . . 3 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
2 | 1 | eleq2i 2898 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ 𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}) |
3 | ovex 6937 | . . . . 5 ⊢ (0..^𝑙) ∈ V | |
4 | fex 6745 | . . . . 5 ⊢ ((𝑊:(0..^𝑙)⟶𝑆 ∧ (0..^𝑙) ∈ V) → 𝑊 ∈ V) | |
5 | 3, 4 | mpan2 684 | . . . 4 ⊢ (𝑊:(0..^𝑙)⟶𝑆 → 𝑊 ∈ V) |
6 | 5 | rexlimivw 3238 | . . 3 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊 ∈ V) |
7 | feq1 6259 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤:(0..^𝑙)⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) | |
8 | 7 | rexbidv 3262 | . . 3 ⊢ (𝑤 = 𝑊 → (∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆)) |
9 | 6, 8 | elab3 3579 | . 2 ⊢ (𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
10 | 2, 9 | bitri 267 | 1 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1658 ∈ wcel 2166 {cab 2811 ∃wrex 3118 Vcvv 3414 ⟶wf 6119 (class class class)co 6905 0cc0 10252 ℕ0cn0 11618 ..^cfzo 12760 Word cword 13574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-word 13575 |
This theorem is referenced by: iswrdi 13578 wrdf 13579 cshword 13910 motcgrg 25856 |
Copyright terms: Public domain | W3C validator |