MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprel Structured version   Visualization version   GIF version

Theorem lspprel 19866
Description: Member of the span of a pair of vectors. (Contributed by NM, 10-Apr-2015.)
Hypotheses
Ref Expression
lsppr.v 𝑉 = (Base‘𝑊)
lsppr.a + = (+g𝑊)
lsppr.f 𝐹 = (Scalar‘𝑊)
lsppr.k 𝐾 = (Base‘𝐹)
lsppr.t · = ( ·𝑠𝑊)
lsppr.n 𝑁 = (LSpan‘𝑊)
lsppr.w (𝜑𝑊 ∈ LMod)
lsppr.x (𝜑𝑋𝑉)
lsppr.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspprel (𝜑 → (𝑍 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑘𝐾𝑙𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))))
Distinct variable groups:   𝑘,𝑙, +   𝑘,𝐹,𝑙   𝑘,𝐾,𝑙   𝑘,𝑁,𝑙   · ,𝑘,𝑙   𝑘,𝑉,𝑙   𝑘,𝑊,𝑙   𝑘,𝑋,𝑙   𝑘,𝑌,𝑙   𝜑,𝑘,𝑙   𝑘,𝑍,𝑙

Proof of Theorem lspprel
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsppr.v . . . 4 𝑉 = (Base‘𝑊)
2 lsppr.a . . . 4 + = (+g𝑊)
3 lsppr.f . . . 4 𝐹 = (Scalar‘𝑊)
4 lsppr.k . . . 4 𝐾 = (Base‘𝐹)
5 lsppr.t . . . 4 · = ( ·𝑠𝑊)
6 lsppr.n . . . 4 𝑁 = (LSpan‘𝑊)
7 lsppr.w . . . 4 (𝜑𝑊 ∈ LMod)
8 lsppr.x . . . 4 (𝜑𝑋𝑉)
9 lsppr.y . . . 4 (𝜑𝑌𝑉)
101, 2, 3, 4, 5, 6, 7, 8, 9lsppr 19865 . . 3 (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))})
1110eleq2d 2898 . 2 (𝜑 → (𝑍 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑍 ∈ {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))}))
12 id 22 . . . . . 6 (𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)) → 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)))
13 ovex 7189 . . . . . 6 ((𝑘 · 𝑋) + (𝑙 · 𝑌)) ∈ V
1412, 13eqeltrdi 2921 . . . . 5 (𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)) → 𝑍 ∈ V)
1514rexlimivw 3282 . . . 4 (∃𝑙𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)) → 𝑍 ∈ V)
1615rexlimivw 3282 . . 3 (∃𝑘𝐾𝑙𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)) → 𝑍 ∈ V)
17 eqeq1 2825 . . . 4 (𝑣 = 𝑍 → (𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)) ↔ 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))))
18172rexbidv 3300 . . 3 (𝑣 = 𝑍 → (∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)) ↔ ∃𝑘𝐾𝑙𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))))
1916, 18elab3 3674 . 2 (𝑍 ∈ {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))} ↔ ∃𝑘𝐾𝑙𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)))
2011, 19syl6bb 289 1 (𝜑 → (𝑍 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑘𝐾𝑙𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  {cab 2799  wrex 3139  Vcvv 3494  {cpr 4569  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  Scalarcsca 16568   ·𝑠 cvsca 16569  LModclmod 19634  LSpanclspn 19743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-cntz 18447  df-lsm 18761  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-lmod 19636  df-lss 19704  df-lsp 19744
This theorem is referenced by:  lspfixed  19900  lspexch  19901  ccfldextdgrr  31057
  Copyright terms: Public domain W3C validator