MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprel Structured version   Visualization version   GIF version

Theorem lspprel 20085
Description: Member of the span of a pair of vectors. (Contributed by NM, 10-Apr-2015.)
Hypotheses
Ref Expression
lsppr.v 𝑉 = (Base‘𝑊)
lsppr.a + = (+g𝑊)
lsppr.f 𝐹 = (Scalar‘𝑊)
lsppr.k 𝐾 = (Base‘𝐹)
lsppr.t · = ( ·𝑠𝑊)
lsppr.n 𝑁 = (LSpan‘𝑊)
lsppr.w (𝜑𝑊 ∈ LMod)
lsppr.x (𝜑𝑋𝑉)
lsppr.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspprel (𝜑 → (𝑍 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑘𝐾𝑙𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))))
Distinct variable groups:   𝑘,𝑙, +   𝑘,𝐹,𝑙   𝑘,𝐾,𝑙   𝑘,𝑁,𝑙   · ,𝑘,𝑙   𝑘,𝑉,𝑙   𝑘,𝑊,𝑙   𝑘,𝑋,𝑙   𝑘,𝑌,𝑙   𝜑,𝑘,𝑙   𝑘,𝑍,𝑙

Proof of Theorem lspprel
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsppr.v . . . 4 𝑉 = (Base‘𝑊)
2 lsppr.a . . . 4 + = (+g𝑊)
3 lsppr.f . . . 4 𝐹 = (Scalar‘𝑊)
4 lsppr.k . . . 4 𝐾 = (Base‘𝐹)
5 lsppr.t . . . 4 · = ( ·𝑠𝑊)
6 lsppr.n . . . 4 𝑁 = (LSpan‘𝑊)
7 lsppr.w . . . 4 (𝜑𝑊 ∈ LMod)
8 lsppr.x . . . 4 (𝜑𝑋𝑉)
9 lsppr.y . . . 4 (𝜑𝑌𝑉)
101, 2, 3, 4, 5, 6, 7, 8, 9lsppr 20084 . . 3 (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))})
1110eleq2d 2816 . 2 (𝜑 → (𝑍 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑍 ∈ {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))}))
12 id 22 . . . . . 6 (𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)) → 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)))
13 ovex 7224 . . . . . 6 ((𝑘 · 𝑋) + (𝑙 · 𝑌)) ∈ V
1412, 13eqeltrdi 2839 . . . . 5 (𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)) → 𝑍 ∈ V)
1514rexlimivw 3191 . . . 4 (∃𝑙𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)) → 𝑍 ∈ V)
1615rexlimivw 3191 . . 3 (∃𝑘𝐾𝑙𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)) → 𝑍 ∈ V)
17 eqeq1 2740 . . . 4 (𝑣 = 𝑍 → (𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)) ↔ 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))))
18172rexbidv 3209 . . 3 (𝑣 = 𝑍 → (∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)) ↔ ∃𝑘𝐾𝑙𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))))
1916, 18elab3 3584 . 2 (𝑍 ∈ {𝑣 ∣ ∃𝑘𝐾𝑙𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))} ↔ ∃𝑘𝐾𝑙𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)))
2011, 19bitrdi 290 1 (𝜑 → (𝑍 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑘𝐾𝑙𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2112  {cab 2714  wrex 3052  Vcvv 3398  {cpr 4529  cfv 6358  (class class class)co 7191  Basecbs 16666  +gcplusg 16749  Scalarcsca 16752   ·𝑠 cvsca 16753  LModclmod 19853  LSpanclspn 19962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-grp 18322  df-minusg 18323  df-sbg 18324  df-subg 18494  df-cntz 18665  df-lsm 18979  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-lmod 19855  df-lss 19923  df-lsp 19963
This theorem is referenced by:  lspfixed  20119  lspexch  20120  ccfldextdgrr  31410
  Copyright terms: Public domain W3C validator