![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspprel | Structured version Visualization version GIF version |
Description: Member of the span of a pair of vectors. (Contributed by NM, 10-Apr-2015.) |
Ref | Expression |
---|---|
lsppr.v | β’ π = (Baseβπ) |
lsppr.a | β’ + = (+gβπ) |
lsppr.f | β’ πΉ = (Scalarβπ) |
lsppr.k | β’ πΎ = (BaseβπΉ) |
lsppr.t | β’ Β· = ( Β·π βπ) |
lsppr.n | β’ π = (LSpanβπ) |
lsppr.w | β’ (π β π β LMod) |
lsppr.x | β’ (π β π β π) |
lsppr.y | β’ (π β π β π) |
Ref | Expression |
---|---|
lspprel | β’ (π β (π β (πβ{π, π}) β βπ β πΎ βπ β πΎ π = ((π Β· π) + (π Β· π)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsppr.v | . . . 4 β’ π = (Baseβπ) | |
2 | lsppr.a | . . . 4 β’ + = (+gβπ) | |
3 | lsppr.f | . . . 4 β’ πΉ = (Scalarβπ) | |
4 | lsppr.k | . . . 4 β’ πΎ = (BaseβπΉ) | |
5 | lsppr.t | . . . 4 β’ Β· = ( Β·π βπ) | |
6 | lsppr.n | . . . 4 β’ π = (LSpanβπ) | |
7 | lsppr.w | . . . 4 β’ (π β π β LMod) | |
8 | lsppr.x | . . . 4 β’ (π β π β π) | |
9 | lsppr.y | . . . 4 β’ (π β π β π) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | lsppr 20939 | . . 3 β’ (π β (πβ{π, π}) = {π£ β£ βπ β πΎ βπ β πΎ π£ = ((π Β· π) + (π Β· π))}) |
11 | 10 | eleq2d 2813 | . 2 β’ (π β (π β (πβ{π, π}) β π β {π£ β£ βπ β πΎ βπ β πΎ π£ = ((π Β· π) + (π Β· π))})) |
12 | id 22 | . . . . . 6 β’ (π = ((π Β· π) + (π Β· π)) β π = ((π Β· π) + (π Β· π))) | |
13 | ovex 7437 | . . . . . 6 β’ ((π Β· π) + (π Β· π)) β V | |
14 | 12, 13 | eqeltrdi 2835 | . . . . 5 β’ (π = ((π Β· π) + (π Β· π)) β π β V) |
15 | 14 | rexlimivw 3145 | . . . 4 β’ (βπ β πΎ π = ((π Β· π) + (π Β· π)) β π β V) |
16 | 15 | rexlimivw 3145 | . . 3 β’ (βπ β πΎ βπ β πΎ π = ((π Β· π) + (π Β· π)) β π β V) |
17 | eqeq1 2730 | . . . 4 β’ (π£ = π β (π£ = ((π Β· π) + (π Β· π)) β π = ((π Β· π) + (π Β· π)))) | |
18 | 17 | 2rexbidv 3213 | . . 3 β’ (π£ = π β (βπ β πΎ βπ β πΎ π£ = ((π Β· π) + (π Β· π)) β βπ β πΎ βπ β πΎ π = ((π Β· π) + (π Β· π)))) |
19 | 16, 18 | elab3 3671 | . 2 β’ (π β {π£ β£ βπ β πΎ βπ β πΎ π£ = ((π Β· π) + (π Β· π))} β βπ β πΎ βπ β πΎ π = ((π Β· π) + (π Β· π))) |
20 | 11, 19 | bitrdi 287 | 1 β’ (π β (π β (πβ{π, π}) β βπ β πΎ βπ β πΎ π = ((π Β· π) + (π Β· π)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 {cab 2703 βwrex 3064 Vcvv 3468 {cpr 4625 βcfv 6536 (class class class)co 7404 Basecbs 17151 +gcplusg 17204 Scalarcsca 17207 Β·π cvsca 17208 LModclmod 20704 LSpanclspn 20816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19048 df-cntz 19231 df-lsm 19554 df-cmn 19700 df-abl 19701 df-mgp 20038 df-ur 20085 df-ring 20138 df-lmod 20706 df-lss 20777 df-lsp 20817 |
This theorem is referenced by: lspfixed 20977 lspexch 20978 ccfldextdgrr 33265 |
Copyright terms: Public domain | W3C validator |