MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapval Structured version   Visualization version   GIF version

Theorem vdwapval 16885
Description: Value of the arithmetic progression function. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwapval ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷))))
Distinct variable groups:   𝐴,𝑚   𝐷,𝑚   𝑚,𝐾   𝑚,𝑋

Proof of Theorem vdwapval
Dummy variables 𝑎 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwapfval 16883 . . . . . . 7 (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
213ad2ant1 1133 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
32oveqd 7363 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘𝐾)𝐷) = (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷))
4 oveq2 7354 . . . . . . . . . 10 (𝑑 = 𝐷 → (𝑚 · 𝑑) = (𝑚 · 𝐷))
5 oveq12 7355 . . . . . . . . . 10 ((𝑎 = 𝐴 ∧ (𝑚 · 𝑑) = (𝑚 · 𝐷)) → (𝑎 + (𝑚 · 𝑑)) = (𝐴 + (𝑚 · 𝐷)))
64, 5sylan2 593 . . . . . . . . 9 ((𝑎 = 𝐴𝑑 = 𝐷) → (𝑎 + (𝑚 · 𝑑)) = (𝐴 + (𝑚 · 𝐷)))
76mpteq2dv 5183 . . . . . . . 8 ((𝑎 = 𝐴𝑑 = 𝐷) → (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
87rneqd 5877 . . . . . . 7 ((𝑎 = 𝐴𝑑 = 𝐷) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
9 eqid 2731 . . . . . . 7 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
10 ovex 7379 . . . . . . . . 9 (0...(𝐾 − 1)) ∈ V
1110mptex 7157 . . . . . . . 8 (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) ∈ V
1211rnex 7840 . . . . . . 7 ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) ∈ V
138, 9, 12ovmpoa 7501 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
14133adant1 1130 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
153, 14eqtrd 2766 . . . 4 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘𝐾)𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
16 eqid 2731 . . . . 5 (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷)))
1716rnmpt 5896 . . . 4 ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) = {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))}
1815, 17eqtrdi 2782 . . 3 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘𝐾)𝐷) = {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))})
1918eleq2d 2817 . 2 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))}))
20 id 22 . . . . 5 (𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 = (𝐴 + (𝑚 · 𝐷)))
21 ovex 7379 . . . . 5 (𝐴 + (𝑚 · 𝐷)) ∈ V
2220, 21eqeltrdi 2839 . . . 4 (𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 ∈ V)
2322rexlimivw 3129 . . 3 (∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 ∈ V)
24 eqeq1 2735 . . . 4 (𝑥 = 𝑋 → (𝑥 = (𝐴 + (𝑚 · 𝐷)) ↔ 𝑋 = (𝐴 + (𝑚 · 𝐷))))
2524rexbidv 3156 . . 3 (𝑥 = 𝑋 → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷))))
2623, 25elab3 3637 . 2 (𝑋 ∈ {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))} ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷)))
2719, 26bitrdi 287 1 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  cmpt 5170  ran crn 5615  cfv 6481  (class class class)co 7346  cmpo 7348  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  cn 12125  0cn0 12381  ...cfz 13407  APcvdwa 16877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-1cn 11064  ax-addcl 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12126  df-vdwap 16880
This theorem is referenced by:  vdwapun  16886  vdwap0  16888  vdwmc2  16891  vdwlem1  16893  vdwlem2  16894  vdwlem6  16898  vdwlem8  16900
  Copyright terms: Public domain W3C validator