MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapval Structured version   Visualization version   GIF version

Theorem vdwapval 16526
Description: Value of the arithmetic progression function. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwapval ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷))))
Distinct variable groups:   𝐴,𝑚   𝐷,𝑚   𝑚,𝐾   𝑚,𝑋

Proof of Theorem vdwapval
Dummy variables 𝑎 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwapfval 16524 . . . . . . 7 (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
213ad2ant1 1135 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
32oveqd 7230 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘𝐾)𝐷) = (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷))
4 oveq2 7221 . . . . . . . . . 10 (𝑑 = 𝐷 → (𝑚 · 𝑑) = (𝑚 · 𝐷))
5 oveq12 7222 . . . . . . . . . 10 ((𝑎 = 𝐴 ∧ (𝑚 · 𝑑) = (𝑚 · 𝐷)) → (𝑎 + (𝑚 · 𝑑)) = (𝐴 + (𝑚 · 𝐷)))
64, 5sylan2 596 . . . . . . . . 9 ((𝑎 = 𝐴𝑑 = 𝐷) → (𝑎 + (𝑚 · 𝑑)) = (𝐴 + (𝑚 · 𝐷)))
76mpteq2dv 5151 . . . . . . . 8 ((𝑎 = 𝐴𝑑 = 𝐷) → (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
87rneqd 5807 . . . . . . 7 ((𝑎 = 𝐴𝑑 = 𝐷) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
9 eqid 2737 . . . . . . 7 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
10 ovex 7246 . . . . . . . . 9 (0...(𝐾 − 1)) ∈ V
1110mptex 7039 . . . . . . . 8 (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) ∈ V
1211rnex 7690 . . . . . . 7 ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) ∈ V
138, 9, 12ovmpoa 7364 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
14133adant1 1132 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
153, 14eqtrd 2777 . . . 4 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘𝐾)𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
16 eqid 2737 . . . . 5 (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷)))
1716rnmpt 5824 . . . 4 ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) = {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))}
1815, 17eqtrdi 2794 . . 3 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘𝐾)𝐷) = {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))})
1918eleq2d 2823 . 2 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))}))
20 id 22 . . . . 5 (𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 = (𝐴 + (𝑚 · 𝐷)))
21 ovex 7246 . . . . 5 (𝐴 + (𝑚 · 𝐷)) ∈ V
2220, 21eqeltrdi 2846 . . . 4 (𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 ∈ V)
2322rexlimivw 3201 . . 3 (∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 ∈ V)
24 eqeq1 2741 . . . 4 (𝑥 = 𝑋 → (𝑥 = (𝐴 + (𝑚 · 𝐷)) ↔ 𝑋 = (𝐴 + (𝑚 · 𝐷))))
2524rexbidv 3216 . . 3 (𝑥 = 𝑋 → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷))))
2623, 25elab3 3595 . 2 (𝑋 ∈ {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))} ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷)))
2719, 26bitrdi 290 1 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  {cab 2714  wrex 3062  Vcvv 3408  cmpt 5135  ran crn 5552  cfv 6380  (class class class)co 7213  cmpo 7215  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  cmin 11062  cn 11830  0cn0 12090  ...cfz 13095  APcvdwa 16518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-1cn 10787  ax-addcl 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-nn 11831  df-vdwap 16521
This theorem is referenced by:  vdwapun  16527  vdwap0  16529  vdwmc2  16532  vdwlem1  16534  vdwlem2  16535  vdwlem6  16539  vdwlem8  16541
  Copyright terms: Public domain W3C validator