Step | Hyp | Ref
| Expression |
1 | | vdwapfval 16524 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ0
→ (AP‘𝐾) =
(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran
(𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))) |
2 | 1 | 3ad2ant1 1135 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (AP‘𝐾) =
(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran
(𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))) |
3 | 2 | oveqd 7230 |
. . . . 5
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴(AP‘𝐾)𝐷) = (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷)) |
4 | | oveq2 7221 |
. . . . . . . . . 10
⊢ (𝑑 = 𝐷 → (𝑚 · 𝑑) = (𝑚 · 𝐷)) |
5 | | oveq12 7222 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝐴 ∧ (𝑚 · 𝑑) = (𝑚 · 𝐷)) → (𝑎 + (𝑚 · 𝑑)) = (𝐴 + (𝑚 · 𝐷))) |
6 | 4, 5 | sylan2 596 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑑 = 𝐷) → (𝑎 + (𝑚 · 𝑑)) = (𝐴 + (𝑚 · 𝐷))) |
7 | 6 | mpteq2dv 5151 |
. . . . . . . 8
⊢ ((𝑎 = 𝐴 ∧ 𝑑 = 𝐷) → (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷)))) |
8 | 7 | rneqd 5807 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑑 = 𝐷) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷)))) |
9 | | eqid 2737 |
. . . . . . 7
⊢ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran
(𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) |
10 | | ovex 7246 |
. . . . . . . . 9
⊢
(0...(𝐾 − 1))
∈ V |
11 | 10 | mptex 7039 |
. . . . . . . 8
⊢ (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) ∈ V |
12 | 11 | rnex 7690 |
. . . . . . 7
⊢ ran
(𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) ∈ V |
13 | 8, 9, 12 | ovmpoa 7364 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷)))) |
14 | 13 | 3adant1 1132 |
. . . . 5
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran
(𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷)))) |
15 | 3, 14 | eqtrd 2777 |
. . . 4
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴(AP‘𝐾)𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷)))) |
16 | | eqid 2737 |
. . . . 5
⊢ (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) |
17 | 16 | rnmpt 5824 |
. . . 4
⊢ ran
(𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) = {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))} |
18 | 15, 17 | eqtrdi 2794 |
. . 3
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴(AP‘𝐾)𝐷) = {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))}) |
19 | 18 | eleq2d 2823 |
. 2
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))})) |
20 | | id 22 |
. . . . 5
⊢ (𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 = (𝐴 + (𝑚 · 𝐷))) |
21 | | ovex 7246 |
. . . . 5
⊢ (𝐴 + (𝑚 · 𝐷)) ∈ V |
22 | 20, 21 | eqeltrdi 2846 |
. . . 4
⊢ (𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 ∈ V) |
23 | 22 | rexlimivw 3201 |
. . 3
⊢
(∃𝑚 ∈
(0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 ∈ V) |
24 | | eqeq1 2741 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑥 = (𝐴 + (𝑚 · 𝐷)) ↔ 𝑋 = (𝐴 + (𝑚 · 𝐷)))) |
25 | 24 | rexbidv 3216 |
. . 3
⊢ (𝑥 = 𝑋 → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷)))) |
26 | 23, 25 | elab3 3595 |
. 2
⊢ (𝑋 ∈ {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))} ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷))) |
27 | 19, 26 | bitrdi 290 |
1
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷)))) |