Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapval Structured version   Visualization version   GIF version

Theorem vdwapval 16319
 Description: Value of the arithmetic progression function. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwapval ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷))))
Distinct variable groups:   𝐴,𝑚   𝐷,𝑚   𝑚,𝐾   𝑚,𝑋

Proof of Theorem vdwapval
Dummy variables 𝑎 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwapfval 16317 . . . . . . 7 (𝐾 ∈ ℕ0 → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
213ad2ant1 1130 . . . . . 6 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (AP‘𝐾) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
32oveqd 7162 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘𝐾)𝐷) = (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷))
4 oveq2 7153 . . . . . . . . . 10 (𝑑 = 𝐷 → (𝑚 · 𝑑) = (𝑚 · 𝐷))
5 oveq12 7154 . . . . . . . . . 10 ((𝑎 = 𝐴 ∧ (𝑚 · 𝑑) = (𝑚 · 𝐷)) → (𝑎 + (𝑚 · 𝑑)) = (𝐴 + (𝑚 · 𝐷)))
64, 5sylan2 595 . . . . . . . . 9 ((𝑎 = 𝐴𝑑 = 𝐷) → (𝑎 + (𝑚 · 𝑑)) = (𝐴 + (𝑚 · 𝐷)))
76mpteq2dv 5130 . . . . . . . 8 ((𝑎 = 𝐴𝑑 = 𝐷) → (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
87rneqd 5778 . . . . . . 7 ((𝑎 = 𝐴𝑑 = 𝐷) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
9 eqid 2798 . . . . . . 7 (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))
10 ovex 7178 . . . . . . . . 9 (0...(𝐾 − 1)) ∈ V
1110mptex 6973 . . . . . . . 8 (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) ∈ V
1211rnex 7612 . . . . . . 7 ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) ∈ V
138, 9, 12ovmpoa 7295 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
14133adant1 1127 . . . . 5 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
153, 14eqtrd 2833 . . . 4 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘𝐾)𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))))
16 eqid 2798 . . . . 5 (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷)))
1716rnmpt 5795 . . . 4 ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) = {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))}
1815, 17eqtrdi 2849 . . 3 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘𝐾)𝐷) = {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))})
1918eleq2d 2875 . 2 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))}))
20 id 22 . . . . 5 (𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 = (𝐴 + (𝑚 · 𝐷)))
21 ovex 7178 . . . . 5 (𝐴 + (𝑚 · 𝐷)) ∈ V
2220, 21eqeltrdi 2898 . . . 4 (𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 ∈ V)
2322rexlimivw 3242 . . 3 (∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 ∈ V)
24 eqeq1 2802 . . . 4 (𝑥 = 𝑋 → (𝑥 = (𝐴 + (𝑚 · 𝐷)) ↔ 𝑋 = (𝐴 + (𝑚 · 𝐷))))
2524rexbidv 3257 . . 3 (𝑥 = 𝑋 → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷))))
2623, 25elab3 3623 . 2 (𝑋 ∈ {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))} ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷)))
2719, 26syl6bb 290 1 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  {cab 2776  ∃wrex 3107  Vcvv 3442   ↦ cmpt 5114  ran crn 5524  ‘cfv 6332  (class class class)co 7145   ∈ cmpo 7147  0cc0 10544  1c1 10545   + caddc 10547   · cmul 10549   − cmin 10877  ℕcn 11643  ℕ0cn0 11903  ...cfz 12905  APcvdwa 16311 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-1cn 10602  ax-addcl 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-nn 11644  df-vdwap 16314 This theorem is referenced by:  vdwapun  16320  vdwap0  16322  vdwmc2  16325  vdwlem1  16327  vdwlem2  16328  vdwlem6  16332  vdwlem8  16334
 Copyright terms: Public domain W3C validator