Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispsubclN | Structured version Visualization version GIF version |
Description: The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
psubclset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
psubclset.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
psubclset.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
ispsubclN | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psubclset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | psubclset.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
3 | psubclset.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
4 | 1, 2, 3 | psubclsetN 37512 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝐶 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)}) |
5 | 4 | eleq2d 2837 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)})) |
6 | 1 | fvexi 6672 | . . . . 5 ⊢ 𝐴 ∈ V |
7 | 6 | ssex 5191 | . . . 4 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ∈ V) |
8 | 7 | adantr 484 | . . 3 ⊢ ((𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → 𝑋 ∈ V) |
9 | sseq1 3917 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
10 | 2fveq3 6663 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( ⊥ ‘( ⊥ ‘𝑥)) = ( ⊥ ‘( ⊥ ‘𝑋))) | |
11 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
12 | 10, 11 | eqeq12d 2774 | . . . 4 ⊢ (𝑥 = 𝑋 → (( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥 ↔ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) |
13 | 9, 12 | anbi12d 633 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
14 | 8, 13 | elab3 3595 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)} ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) |
15 | 5, 14 | bitrdi 290 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 Vcvv 3409 ⊆ wss 3858 ‘cfv 6335 Atomscatm 36839 ⊥𝑃cpolN 37478 PSubClcpscN 37510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-iota 6294 df-fun 6337 df-fv 6343 df-psubclN 37511 |
This theorem is referenced by: psubcliN 37514 psubcli2N 37515 0psubclN 37519 1psubclN 37520 atpsubclN 37521 pmapsubclN 37522 ispsubcl2N 37523 osumclN 37543 pexmidN 37545 pexmidlem6N 37551 |
Copyright terms: Public domain | W3C validator |