Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubclN Structured version   Visualization version   GIF version

Theorem ispsubclN 39321
Description: The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclset.a 𝐴 = (Atomsβ€˜πΎ)
psubclset.p βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
psubclset.c 𝐢 = (PSubClβ€˜πΎ)
Assertion
Ref Expression
ispsubclN (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝐢 ↔ (𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)))

Proof of Theorem ispsubclN
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 psubclset.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
2 psubclset.p . . . 4 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
3 psubclset.c . . . 4 𝐢 = (PSubClβ€˜πΎ)
41, 2, 3psubclsetN 39320 . . 3 (𝐾 ∈ 𝐷 β†’ 𝐢 = {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯)})
54eleq2d 2813 . 2 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝐢 ↔ 𝑋 ∈ {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯)}))
61fvexi 6899 . . . . 5 𝐴 ∈ V
76ssex 5314 . . . 4 (𝑋 βŠ† 𝐴 β†’ 𝑋 ∈ V)
87adantr 480 . . 3 ((𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋) β†’ 𝑋 ∈ V)
9 sseq1 4002 . . . 4 (π‘₯ = 𝑋 β†’ (π‘₯ βŠ† 𝐴 ↔ 𝑋 βŠ† 𝐴))
10 2fveq3 6890 . . . . 5 (π‘₯ = 𝑋 β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))
11 id 22 . . . . 5 (π‘₯ = 𝑋 β†’ π‘₯ = 𝑋)
1210, 11eqeq12d 2742 . . . 4 (π‘₯ = 𝑋 β†’ (( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ↔ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋))
139, 12anbi12d 630 . . 3 (π‘₯ = 𝑋 β†’ ((π‘₯ βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯) ↔ (𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)))
148, 13elab3 3671 . 2 (𝑋 ∈ {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯)} ↔ (𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋))
155, 14bitrdi 287 1 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝐢 ↔ (𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  {cab 2703  Vcvv 3468   βŠ† wss 3943  β€˜cfv 6537  Atomscatm 38646  βŠ₯𝑃cpolN 39286  PSubClcpscN 39318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6489  df-fun 6539  df-fv 6545  df-psubclN 39319
This theorem is referenced by:  psubcliN  39322  psubcli2N  39323  0psubclN  39327  1psubclN  39328  atpsubclN  39329  pmapsubclN  39330  ispsubcl2N  39331  osumclN  39351  pexmidN  39353  pexmidlem6N  39359
  Copyright terms: Public domain W3C validator