Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispsubclN | Structured version Visualization version GIF version |
Description: The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
psubclset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
psubclset.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
psubclset.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
ispsubclN | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psubclset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | psubclset.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
3 | psubclset.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
4 | 1, 2, 3 | psubclsetN 37950 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝐶 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)}) |
5 | 4 | eleq2d 2824 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)})) |
6 | 1 | fvexi 6788 | . . . . 5 ⊢ 𝐴 ∈ V |
7 | 6 | ssex 5245 | . . . 4 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ∈ V) |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → 𝑋 ∈ V) |
9 | sseq1 3946 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
10 | 2fveq3 6779 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( ⊥ ‘( ⊥ ‘𝑥)) = ( ⊥ ‘( ⊥ ‘𝑋))) | |
11 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
12 | 10, 11 | eqeq12d 2754 | . . . 4 ⊢ (𝑥 = 𝑋 → (( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥 ↔ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) |
13 | 9, 12 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
14 | 8, 13 | elab3 3617 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)} ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) |
15 | 5, 14 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 Vcvv 3432 ⊆ wss 3887 ‘cfv 6433 Atomscatm 37277 ⊥𝑃cpolN 37916 PSubClcpscN 37948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-psubclN 37949 |
This theorem is referenced by: psubcliN 37952 psubcli2N 37953 0psubclN 37957 1psubclN 37958 atpsubclN 37959 pmapsubclN 37960 ispsubcl2N 37961 osumclN 37981 pexmidN 37983 pexmidlem6N 37989 |
Copyright terms: Public domain | W3C validator |