| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ispsubclN | Structured version Visualization version GIF version | ||
| Description: The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| psubclset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| psubclset.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| psubclset.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| Ref | Expression |
|---|---|
| ispsubclN | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubclset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | psubclset.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 3 | psubclset.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 4 | 1, 2, 3 | psubclsetN 39919 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝐶 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)}) |
| 5 | 4 | eleq2d 2814 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)})) |
| 6 | 1 | fvexi 6836 | . . . . 5 ⊢ 𝐴 ∈ V |
| 7 | 6 | ssex 5260 | . . . 4 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ∈ V) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → 𝑋 ∈ V) |
| 9 | sseq1 3961 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
| 10 | 2fveq3 6827 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( ⊥ ‘( ⊥ ‘𝑥)) = ( ⊥ ‘( ⊥ ‘𝑋))) | |
| 11 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 12 | 10, 11 | eqeq12d 2745 | . . . 4 ⊢ (𝑥 = 𝑋 → (( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥 ↔ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) |
| 13 | 9, 12 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
| 14 | 8, 13 | elab3 3642 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)} ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) |
| 15 | 5, 14 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3436 ⊆ wss 3903 ‘cfv 6482 Atomscatm 39246 ⊥𝑃cpolN 39885 PSubClcpscN 39917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-psubclN 39918 |
| This theorem is referenced by: psubcliN 39921 psubcli2N 39922 0psubclN 39926 1psubclN 39927 atpsubclN 39928 pmapsubclN 39929 ispsubcl2N 39930 osumclN 39950 pexmidN 39952 pexmidlem6N 39958 |
| Copyright terms: Public domain | W3C validator |