| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ispsubclN | Structured version Visualization version GIF version | ||
| Description: The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| psubclset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| psubclset.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| psubclset.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| Ref | Expression |
|---|---|
| ispsubclN | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubclset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | psubclset.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 3 | psubclset.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 4 | 1, 2, 3 | psubclsetN 39913 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝐶 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)}) |
| 5 | 4 | eleq2d 2819 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ 𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)})) |
| 6 | 1 | fvexi 6900 | . . . . 5 ⊢ 𝐴 ∈ V |
| 7 | 6 | ssex 5301 | . . . 4 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ∈ V) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) → 𝑋 ∈ V) |
| 9 | sseq1 3989 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
| 10 | 2fveq3 6891 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( ⊥ ‘( ⊥ ‘𝑥)) = ( ⊥ ‘( ⊥ ‘𝑋))) | |
| 11 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 12 | 10, 11 | eqeq12d 2750 | . . . 4 ⊢ (𝑥 = 𝑋 → (( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥 ↔ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) |
| 13 | 9, 12 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
| 14 | 8, 13 | elab3 3669 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)} ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) |
| 15 | 5, 14 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 Vcvv 3463 ⊆ wss 3931 ‘cfv 6541 Atomscatm 39239 ⊥𝑃cpolN 39879 PSubClcpscN 39911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-psubclN 39912 |
| This theorem is referenced by: psubcliN 39915 psubcli2N 39916 0psubclN 39920 1psubclN 39921 atpsubclN 39922 pmapsubclN 39923 ispsubcl2N 39924 osumclN 39944 pexmidN 39946 pexmidlem6N 39952 |
| Copyright terms: Public domain | W3C validator |