![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispsubclN | Structured version Visualization version GIF version |
Description: The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
psubclset.a | β’ π΄ = (AtomsβπΎ) |
psubclset.p | β’ β₯ = (β₯πβπΎ) |
psubclset.c | β’ πΆ = (PSubClβπΎ) |
Ref | Expression |
---|---|
ispsubclN | β’ (πΎ β π· β (π β πΆ β (π β π΄ β§ ( β₯ β( β₯ βπ)) = π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psubclset.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
2 | psubclset.p | . . . 4 β’ β₯ = (β₯πβπΎ) | |
3 | psubclset.c | . . . 4 β’ πΆ = (PSubClβπΎ) | |
4 | 1, 2, 3 | psubclsetN 38802 | . . 3 β’ (πΎ β π· β πΆ = {π₯ β£ (π₯ β π΄ β§ ( β₯ β( β₯ βπ₯)) = π₯)}) |
5 | 4 | eleq2d 2819 | . 2 β’ (πΎ β π· β (π β πΆ β π β {π₯ β£ (π₯ β π΄ β§ ( β₯ β( β₯ βπ₯)) = π₯)})) |
6 | 1 | fvexi 6905 | . . . . 5 β’ π΄ β V |
7 | 6 | ssex 5321 | . . . 4 β’ (π β π΄ β π β V) |
8 | 7 | adantr 481 | . . 3 β’ ((π β π΄ β§ ( β₯ β( β₯ βπ)) = π) β π β V) |
9 | sseq1 4007 | . . . 4 β’ (π₯ = π β (π₯ β π΄ β π β π΄)) | |
10 | 2fveq3 6896 | . . . . 5 β’ (π₯ = π β ( β₯ β( β₯ βπ₯)) = ( β₯ β( β₯ βπ))) | |
11 | id 22 | . . . . 5 β’ (π₯ = π β π₯ = π) | |
12 | 10, 11 | eqeq12d 2748 | . . . 4 β’ (π₯ = π β (( β₯ β( β₯ βπ₯)) = π₯ β ( β₯ β( β₯ βπ)) = π)) |
13 | 9, 12 | anbi12d 631 | . . 3 β’ (π₯ = π β ((π₯ β π΄ β§ ( β₯ β( β₯ βπ₯)) = π₯) β (π β π΄ β§ ( β₯ β( β₯ βπ)) = π))) |
14 | 8, 13 | elab3 3676 | . 2 β’ (π β {π₯ β£ (π₯ β π΄ β§ ( β₯ β( β₯ βπ₯)) = π₯)} β (π β π΄ β§ ( β₯ β( β₯ βπ)) = π)) |
15 | 5, 14 | bitrdi 286 | 1 β’ (πΎ β π· β (π β πΆ β (π β π΄ β§ ( β₯ β( β₯ βπ)) = π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 {cab 2709 Vcvv 3474 β wss 3948 βcfv 6543 Atomscatm 38128 β₯πcpolN 38768 PSubClcpscN 38800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-psubclN 38801 |
This theorem is referenced by: psubcliN 38804 psubcli2N 38805 0psubclN 38809 1psubclN 38810 atpsubclN 38811 pmapsubclN 38812 ispsubcl2N 38813 osumclN 38833 pexmidN 38835 pexmidlem6N 38841 |
Copyright terms: Public domain | W3C validator |