Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubclN Structured version   Visualization version   GIF version

Theorem ispsubclN 39894
Description: The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclset.a 𝐴 = (Atoms‘𝐾)
psubclset.p = (⊥𝑃𝐾)
psubclset.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
ispsubclN (𝐾𝐷 → (𝑋𝐶 ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))

Proof of Theorem ispsubclN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psubclset.a . . . 4 𝐴 = (Atoms‘𝐾)
2 psubclset.p . . . 4 = (⊥𝑃𝐾)
3 psubclset.c . . . 4 𝐶 = (PSubCl‘𝐾)
41, 2, 3psubclsetN 39893 . . 3 (𝐾𝐷𝐶 = {𝑥 ∣ (𝑥𝐴 ∧ ( ‘( 𝑥)) = 𝑥)})
54eleq2d 2830 . 2 (𝐾𝐷 → (𝑋𝐶𝑋 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ( ‘( 𝑥)) = 𝑥)}))
61fvexi 6934 . . . . 5 𝐴 ∈ V
76ssex 5339 . . . 4 (𝑋𝐴𝑋 ∈ V)
87adantr 480 . . 3 ((𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋) → 𝑋 ∈ V)
9 sseq1 4034 . . . 4 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
10 2fveq3 6925 . . . . 5 (𝑥 = 𝑋 → ( ‘( 𝑥)) = ( ‘( 𝑋)))
11 id 22 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
1210, 11eqeq12d 2756 . . . 4 (𝑥 = 𝑋 → (( ‘( 𝑥)) = 𝑥 ↔ ( ‘( 𝑋)) = 𝑋))
139, 12anbi12d 631 . . 3 (𝑥 = 𝑋 → ((𝑥𝐴 ∧ ( ‘( 𝑥)) = 𝑥) ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
148, 13elab3 3702 . 2 (𝑋 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ( ‘( 𝑥)) = 𝑥)} ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋))
155, 14bitrdi 287 1 (𝐾𝐷 → (𝑋𝐶 ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  Vcvv 3488  wss 3976  cfv 6573  Atomscatm 39219  𝑃cpolN 39859  PSubClcpscN 39891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-psubclN 39892
This theorem is referenced by:  psubcliN  39895  psubcli2N  39896  0psubclN  39900  1psubclN  39901  atpsubclN  39902  pmapsubclN  39903  ispsubcl2N  39904  osumclN  39924  pexmidN  39926  pexmidlem6N  39932
  Copyright terms: Public domain W3C validator