Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubclN Structured version   Visualization version   GIF version

Theorem ispsubclN 37878
Description: The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclset.a 𝐴 = (Atoms‘𝐾)
psubclset.p = (⊥𝑃𝐾)
psubclset.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
ispsubclN (𝐾𝐷 → (𝑋𝐶 ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))

Proof of Theorem ispsubclN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psubclset.a . . . 4 𝐴 = (Atoms‘𝐾)
2 psubclset.p . . . 4 = (⊥𝑃𝐾)
3 psubclset.c . . . 4 𝐶 = (PSubCl‘𝐾)
41, 2, 3psubclsetN 37877 . . 3 (𝐾𝐷𝐶 = {𝑥 ∣ (𝑥𝐴 ∧ ( ‘( 𝑥)) = 𝑥)})
54eleq2d 2824 . 2 (𝐾𝐷 → (𝑋𝐶𝑋 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ( ‘( 𝑥)) = 𝑥)}))
61fvexi 6770 . . . . 5 𝐴 ∈ V
76ssex 5240 . . . 4 (𝑋𝐴𝑋 ∈ V)
87adantr 480 . . 3 ((𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋) → 𝑋 ∈ V)
9 sseq1 3942 . . . 4 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
10 2fveq3 6761 . . . . 5 (𝑥 = 𝑋 → ( ‘( 𝑥)) = ( ‘( 𝑋)))
11 id 22 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
1210, 11eqeq12d 2754 . . . 4 (𝑥 = 𝑋 → (( ‘( 𝑥)) = 𝑥 ↔ ( ‘( 𝑋)) = 𝑋))
139, 12anbi12d 630 . . 3 (𝑥 = 𝑋 → ((𝑥𝐴 ∧ ( ‘( 𝑥)) = 𝑥) ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
148, 13elab3 3610 . 2 (𝑋 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ( ‘( 𝑥)) = 𝑥)} ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋))
155, 14bitrdi 286 1 (𝐾𝐷 → (𝑋𝐶 ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  Vcvv 3422  wss 3883  cfv 6418  Atomscatm 37204  𝑃cpolN 37843  PSubClcpscN 37875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-psubclN 37876
This theorem is referenced by:  psubcliN  37879  psubcli2N  37880  0psubclN  37884  1psubclN  37885  atpsubclN  37886  pmapsubclN  37887  ispsubcl2N  37888  osumclN  37908  pexmidN  37910  pexmidlem6N  37916
  Copyright terms: Public domain W3C validator