Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubclN Structured version   Visualization version   GIF version

Theorem ispsubclN 38803
Description: The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
psubclset.a 𝐴 = (Atomsβ€˜πΎ)
psubclset.p βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
psubclset.c 𝐢 = (PSubClβ€˜πΎ)
Assertion
Ref Expression
ispsubclN (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝐢 ↔ (𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)))

Proof of Theorem ispsubclN
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 psubclset.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
2 psubclset.p . . . 4 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
3 psubclset.c . . . 4 𝐢 = (PSubClβ€˜πΎ)
41, 2, 3psubclsetN 38802 . . 3 (𝐾 ∈ 𝐷 β†’ 𝐢 = {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯)})
54eleq2d 2819 . 2 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝐢 ↔ 𝑋 ∈ {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯)}))
61fvexi 6905 . . . . 5 𝐴 ∈ V
76ssex 5321 . . . 4 (𝑋 βŠ† 𝐴 β†’ 𝑋 ∈ V)
87adantr 481 . . 3 ((𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋) β†’ 𝑋 ∈ V)
9 sseq1 4007 . . . 4 (π‘₯ = 𝑋 β†’ (π‘₯ βŠ† 𝐴 ↔ 𝑋 βŠ† 𝐴))
10 2fveq3 6896 . . . . 5 (π‘₯ = 𝑋 β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)))
11 id 22 . . . . 5 (π‘₯ = 𝑋 β†’ π‘₯ = 𝑋)
1210, 11eqeq12d 2748 . . . 4 (π‘₯ = 𝑋 β†’ (( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯ ↔ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋))
139, 12anbi12d 631 . . 3 (π‘₯ = 𝑋 β†’ ((π‘₯ βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯) ↔ (𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)))
148, 13elab3 3676 . 2 (𝑋 ∈ {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯)} ↔ (𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋))
155, 14bitrdi 286 1 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝐢 ↔ (𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  Vcvv 3474   βŠ† wss 3948  β€˜cfv 6543  Atomscatm 38128  βŠ₯𝑃cpolN 38768  PSubClcpscN 38800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-psubclN 38801
This theorem is referenced by:  psubcliN  38804  psubcli2N  38805  0psubclN  38809  1psubclN  38810  atpsubclN  38811  pmapsubclN  38812  ispsubcl2N  38813  osumclN  38833  pexmidN  38835  pexmidlem6N  38841
  Copyright terms: Public domain W3C validator