Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > genpelv | Structured version Visualization version GIF version |
Description: Membership in value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
Ref | Expression |
---|---|
genpelv | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | genp.1 | . . . 4 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
2 | genp.2 | . . . 4 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
3 | 1, 2 | genpv 10848 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ)}) |
4 | 3 | eleq2d 2822 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ 𝐶 ∈ {𝑓 ∣ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ)})) |
5 | id 22 | . . . . . 6 ⊢ (𝐶 = (𝑔𝐺ℎ) → 𝐶 = (𝑔𝐺ℎ)) | |
6 | ovex 7362 | . . . . . 6 ⊢ (𝑔𝐺ℎ) ∈ V | |
7 | 5, 6 | eqeltrdi 2845 | . . . . 5 ⊢ (𝐶 = (𝑔𝐺ℎ) → 𝐶 ∈ V) |
8 | 7 | rexlimivw 3144 | . . . 4 ⊢ (∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ) → 𝐶 ∈ V) |
9 | 8 | rexlimivw 3144 | . . 3 ⊢ (∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ) → 𝐶 ∈ V) |
10 | eqeq1 2740 | . . . 4 ⊢ (𝑓 = 𝐶 → (𝑓 = (𝑔𝐺ℎ) ↔ 𝐶 = (𝑔𝐺ℎ))) | |
11 | 10 | 2rexbidv 3209 | . . 3 ⊢ (𝑓 = 𝐶 → (∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ))) |
12 | 9, 11 | elab3 3627 | . 2 ⊢ (𝐶 ∈ {𝑓 ∣ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ)} ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ)) |
13 | 4, 12 | bitrdi 286 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {cab 2713 ∃wrex 3070 Vcvv 3441 (class class class)co 7329 ∈ cmpo 7331 Qcnq 10701 Pcnp 10708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-ni 10721 df-nq 10761 df-np 10830 |
This theorem is referenced by: genpprecl 10850 genpss 10853 genpnnp 10854 genpcd 10855 genpnmax 10856 genpass 10858 distrlem1pr 10874 distrlem5pr 10876 1idpr 10878 ltexprlem6 10890 reclem3pr 10898 reclem4pr 10899 |
Copyright terms: Public domain | W3C validator |