MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpelv Structured version   Visualization version   GIF version

Theorem genpelv 10953
Description: Membership in value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpelv ((𝐴P𝐵P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝐶 = (𝑔𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑔,   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧,𝑔,   𝑔,𝐹   𝐶,𝑔,
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,)

Proof of Theorem genpelv
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 genp.1 . . . 4 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2 genp.2 . . . 4 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpv 10952 . . 3 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)})
43eleq2d 2814 . 2 ((𝐴P𝐵P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ 𝐶 ∈ {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)}))
5 id 22 . . . . . 6 (𝐶 = (𝑔𝐺) → 𝐶 = (𝑔𝐺))
6 ovex 7420 . . . . . 6 (𝑔𝐺) ∈ V
75, 6eqeltrdi 2836 . . . . 5 (𝐶 = (𝑔𝐺) → 𝐶 ∈ V)
87rexlimivw 3130 . . . 4 (∃𝐵 𝐶 = (𝑔𝐺) → 𝐶 ∈ V)
98rexlimivw 3130 . . 3 (∃𝑔𝐴𝐵 𝐶 = (𝑔𝐺) → 𝐶 ∈ V)
10 eqeq1 2733 . . . 4 (𝑓 = 𝐶 → (𝑓 = (𝑔𝐺) ↔ 𝐶 = (𝑔𝐺)))
11102rexbidv 3202 . . 3 (𝑓 = 𝐶 → (∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺) ↔ ∃𝑔𝐴𝐵 𝐶 = (𝑔𝐺)))
129, 11elab3 3653 . 2 (𝐶 ∈ {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)} ↔ ∃𝑔𝐴𝐵 𝐶 = (𝑔𝐺))
134, 12bitrdi 287 1 ((𝐴P𝐵P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝐶 = (𝑔𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447  (class class class)co 7387  cmpo 7389  Qcnq 10805  Pcnp 10812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-ni 10825  df-nq 10865  df-np 10934
This theorem is referenced by:  genpprecl  10954  genpss  10957  genpnnp  10958  genpcd  10959  genpnmax  10960  genpass  10962  distrlem1pr  10978  distrlem5pr  10980  1idpr  10982  ltexprlem6  10994  reclem3pr  11002  reclem4pr  11003
  Copyright terms: Public domain W3C validator