| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > genpelv | Structured version Visualization version GIF version | ||
| Description: Membership in value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
| genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
| Ref | Expression |
|---|---|
| genpelv | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | . . . 4 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
| 2 | genp.2 | . . . 4 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
| 3 | 1, 2 | genpv 10959 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ)}) |
| 4 | 3 | eleq2d 2815 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ 𝐶 ∈ {𝑓 ∣ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ)})) |
| 5 | id 22 | . . . . . 6 ⊢ (𝐶 = (𝑔𝐺ℎ) → 𝐶 = (𝑔𝐺ℎ)) | |
| 6 | ovex 7423 | . . . . . 6 ⊢ (𝑔𝐺ℎ) ∈ V | |
| 7 | 5, 6 | eqeltrdi 2837 | . . . . 5 ⊢ (𝐶 = (𝑔𝐺ℎ) → 𝐶 ∈ V) |
| 8 | 7 | rexlimivw 3131 | . . . 4 ⊢ (∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ) → 𝐶 ∈ V) |
| 9 | 8 | rexlimivw 3131 | . . 3 ⊢ (∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ) → 𝐶 ∈ V) |
| 10 | eqeq1 2734 | . . . 4 ⊢ (𝑓 = 𝐶 → (𝑓 = (𝑔𝐺ℎ) ↔ 𝐶 = (𝑔𝐺ℎ))) | |
| 11 | 10 | 2rexbidv 3203 | . . 3 ⊢ (𝑓 = 𝐶 → (∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ))) |
| 12 | 9, 11 | elab3 3656 | . 2 ⊢ (𝐶 ∈ {𝑓 ∣ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ)} ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ)) |
| 13 | 4, 12 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 Vcvv 3450 (class class class)co 7390 ∈ cmpo 7392 Qcnq 10812 Pcnp 10819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-ni 10832 df-nq 10872 df-np 10941 |
| This theorem is referenced by: genpprecl 10961 genpss 10964 genpnnp 10965 genpcd 10966 genpnmax 10967 genpass 10969 distrlem1pr 10985 distrlem5pr 10987 1idpr 10989 ltexprlem6 11001 reclem3pr 11009 reclem4pr 11010 |
| Copyright terms: Public domain | W3C validator |