MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpelv Structured version   Visualization version   GIF version

Theorem genpelv 10687
Description: Membership in value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpelv ((𝐴P𝐵P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝐶 = (𝑔𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑔,   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧,𝑔,   𝑔,𝐹   𝐶,𝑔,
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,)

Proof of Theorem genpelv
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 genp.1 . . . 4 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2 genp.2 . . . 4 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpv 10686 . . 3 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)})
43eleq2d 2824 . 2 ((𝐴P𝐵P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ 𝐶 ∈ {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)}))
5 id 22 . . . . . 6 (𝐶 = (𝑔𝐺) → 𝐶 = (𝑔𝐺))
6 ovex 7288 . . . . . 6 (𝑔𝐺) ∈ V
75, 6eqeltrdi 2847 . . . . 5 (𝐶 = (𝑔𝐺) → 𝐶 ∈ V)
87rexlimivw 3210 . . . 4 (∃𝐵 𝐶 = (𝑔𝐺) → 𝐶 ∈ V)
98rexlimivw 3210 . . 3 (∃𝑔𝐴𝐵 𝐶 = (𝑔𝐺) → 𝐶 ∈ V)
10 eqeq1 2742 . . . 4 (𝑓 = 𝐶 → (𝑓 = (𝑔𝐺) ↔ 𝐶 = (𝑔𝐺)))
11102rexbidv 3228 . . 3 (𝑓 = 𝐶 → (∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺) ↔ ∃𝑔𝐴𝐵 𝐶 = (𝑔𝐺)))
129, 11elab3 3610 . 2 (𝐶 ∈ {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)} ↔ ∃𝑔𝐴𝐵 𝐶 = (𝑔𝐺))
134, 12bitrdi 286 1 ((𝐴P𝐵P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝐶 = (𝑔𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  Vcvv 3422  (class class class)co 7255  cmpo 7257  Qcnq 10539  Pcnp 10546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-ni 10559  df-nq 10599  df-np 10668
This theorem is referenced by:  genpprecl  10688  genpss  10691  genpnnp  10692  genpcd  10693  genpnmax  10694  genpass  10696  distrlem1pr  10712  distrlem5pr  10714  1idpr  10716  ltexprlem6  10728  reclem3pr  10736  reclem4pr  10737
  Copyright terms: Public domain W3C validator