![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > genpelv | Structured version Visualization version GIF version |
Description: Membership in value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
Ref | Expression |
---|---|
genpelv | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | genp.1 | . . . 4 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
2 | genp.2 | . . . 4 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
3 | 1, 2 | genpv 10156 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ)}) |
4 | 3 | eleq2d 2844 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ 𝐶 ∈ {𝑓 ∣ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ)})) |
5 | id 22 | . . . . . 6 ⊢ (𝐶 = (𝑔𝐺ℎ) → 𝐶 = (𝑔𝐺ℎ)) | |
6 | ovex 6954 | . . . . . 6 ⊢ (𝑔𝐺ℎ) ∈ V | |
7 | 5, 6 | syl6eqel 2866 | . . . . 5 ⊢ (𝐶 = (𝑔𝐺ℎ) → 𝐶 ∈ V) |
8 | 7 | rexlimivw 3210 | . . . 4 ⊢ (∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ) → 𝐶 ∈ V) |
9 | 8 | rexlimivw 3210 | . . 3 ⊢ (∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ) → 𝐶 ∈ V) |
10 | eqeq1 2781 | . . . 4 ⊢ (𝑓 = 𝐶 → (𝑓 = (𝑔𝐺ℎ) ↔ 𝐶 = (𝑔𝐺ℎ))) | |
11 | 10 | 2rexbidv 3241 | . . 3 ⊢ (𝑓 = 𝐶 → (∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ))) |
12 | 9, 11 | elab3 3565 | . 2 ⊢ (𝐶 ∈ {𝑓 ∣ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ)} ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ)) |
13 | 4, 12 | syl6bb 279 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2106 {cab 2762 ∃wrex 3090 Vcvv 3397 (class class class)co 6922 ↦ cmpt2 6924 Qcnq 10009 Pcnp 10016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-ni 10029 df-nq 10069 df-np 10138 |
This theorem is referenced by: genpprecl 10158 genpss 10161 genpnnp 10162 genpcd 10163 genpnmax 10164 genpass 10166 distrlem1pr 10182 distrlem5pr 10184 1idpr 10186 ltexprlem6 10198 reclem3pr 10206 reclem4pr 10207 |
Copyright terms: Public domain | W3C validator |