Proof of Theorem elpt
Step | Hyp | Ref
| Expression |
1 | | ptbas.1 |
. . 3
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
2 | 1 | eleq2i 2830 |
. 2
⊢ (𝑆 ∈ 𝐵 ↔ 𝑆 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))}) |
3 | | simpr 485 |
. . . . 5
⊢ (((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → 𝑆 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) |
4 | | ixpexg 8710 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐴 (𝑔‘𝑦) ∈ V → X𝑦 ∈
𝐴 (𝑔‘𝑦) ∈ V) |
5 | | fvexd 6789 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 → (𝑔‘𝑦) ∈ V) |
6 | 4, 5 | mprg 3078 |
. . . . 5
⊢ X𝑦 ∈
𝐴 (𝑔‘𝑦) ∈ V |
7 | 3, 6 | eqeltrdi 2847 |
. . . 4
⊢ (((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → 𝑆 ∈ V) |
8 | 7 | exlimiv 1933 |
. . 3
⊢
(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → 𝑆 ∈ V) |
9 | | eqeq1 2742 |
. . . . 5
⊢ (𝑥 = 𝑆 → (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) ↔ 𝑆 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))) |
10 | 9 | anbi2d 629 |
. . . 4
⊢ (𝑥 = 𝑆 → (((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)))) |
11 | 10 | exbidv 1924 |
. . 3
⊢ (𝑥 = 𝑆 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)))) |
12 | 8, 11 | elab3 3617 |
. 2
⊢ (𝑆 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))) |
13 | | fneq1 6524 |
. . . . 5
⊢ (𝑔 = ℎ → (𝑔 Fn 𝐴 ↔ ℎ Fn 𝐴)) |
14 | | fveq1 6773 |
. . . . . . 7
⊢ (𝑔 = ℎ → (𝑔‘𝑦) = (ℎ‘𝑦)) |
15 | 14 | eleq1d 2823 |
. . . . . 6
⊢ (𝑔 = ℎ → ((𝑔‘𝑦) ∈ (𝐹‘𝑦) ↔ (ℎ‘𝑦) ∈ (𝐹‘𝑦))) |
16 | 15 | ralbidv 3112 |
. . . . 5
⊢ (𝑔 = ℎ → (∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦))) |
17 | 14 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑔 = ℎ → ((𝑔‘𝑦) = ∪ (𝐹‘𝑦) ↔ (ℎ‘𝑦) = ∪ (𝐹‘𝑦))) |
18 | 17 | rexralbidv 3230 |
. . . . . 6
⊢ (𝑔 = ℎ → (∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦) ↔ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) |
19 | | difeq2 4051 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (𝐴 ∖ 𝑧) = (𝐴 ∖ 𝑤)) |
20 | 19 | raleqdv 3348 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → (∀𝑦 ∈ (𝐴 ∖ 𝑧)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) ↔ ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) |
21 | 20 | cbvrexvw 3384 |
. . . . . 6
⊢
(∃𝑧 ∈ Fin
∀𝑦 ∈ (𝐴 ∖ 𝑧)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) ↔ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) |
22 | 18, 21 | bitrdi 287 |
. . . . 5
⊢ (𝑔 = ℎ → (∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦) ↔ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦))) |
23 | 13, 16, 22 | 3anbi123d 1435 |
. . . 4
⊢ (𝑔 = ℎ → ((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ↔ (ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)))) |
24 | 14 | ixpeq2dv 8701 |
. . . . 5
⊢ (𝑔 = ℎ → X𝑦 ∈ 𝐴 (𝑔‘𝑦) = X𝑦 ∈ 𝐴 (ℎ‘𝑦)) |
25 | 24 | eqeq2d 2749 |
. . . 4
⊢ (𝑔 = ℎ → (𝑆 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) ↔ 𝑆 = X𝑦 ∈ 𝐴 (ℎ‘𝑦))) |
26 | 23, 25 | anbi12d 631 |
. . 3
⊢ (𝑔 = ℎ → (((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ↔ ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (ℎ‘𝑦)))) |
27 | 26 | cbvexvw 2040 |
. 2
⊢
(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ↔ ∃ℎ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (ℎ‘𝑦))) |
28 | 2, 12, 27 | 3bitri 297 |
1
⊢ (𝑆 ∈ 𝐵 ↔ ∃ℎ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (ℎ‘𝑦))) |