MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpt Structured version   Visualization version   GIF version

Theorem elpt 22923
Description: Elementhood in the bases of a product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
elpt (𝑆𝐵 ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑦)))
Distinct variable groups:   𝑔,,𝑤,𝑥,𝑦,𝑧,𝐴   𝑔,𝐹,,𝑤,𝑥,𝑦,𝑧   𝑆,𝑔,,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑔,)   𝑆(𝑦,𝑧,𝑤)

Proof of Theorem elpt
StepHypRef Expression
1 ptbas.1 . . 3 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21eleq2i 2829 . 2 (𝑆𝐵𝑆 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))})
3 simpr 485 . . . . 5 (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦)) → 𝑆 = X𝑦𝐴 (𝑔𝑦))
4 ixpexg 8860 . . . . . 6 (∀𝑦𝐴 (𝑔𝑦) ∈ V → X𝑦𝐴 (𝑔𝑦) ∈ V)
5 fvexd 6857 . . . . . 6 (𝑦𝐴 → (𝑔𝑦) ∈ V)
64, 5mprg 3070 . . . . 5 X𝑦𝐴 (𝑔𝑦) ∈ V
73, 6eqeltrdi 2846 . . . 4 (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦)) → 𝑆 ∈ V)
87exlimiv 1933 . . 3 (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦)) → 𝑆 ∈ V)
9 eqeq1 2740 . . . . 5 (𝑥 = 𝑆 → (𝑥 = X𝑦𝐴 (𝑔𝑦) ↔ 𝑆 = X𝑦𝐴 (𝑔𝑦)))
109anbi2d 629 . . . 4 (𝑥 = 𝑆 → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦))))
1110exbidv 1924 . . 3 (𝑥 = 𝑆 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦))))
128, 11elab3 3638 . 2 (𝑆 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦)))
13 fneq1 6593 . . . . 5 (𝑔 = → (𝑔 Fn 𝐴 Fn 𝐴))
14 fveq1 6841 . . . . . . 7 (𝑔 = → (𝑔𝑦) = (𝑦))
1514eleq1d 2822 . . . . . 6 (𝑔 = → ((𝑔𝑦) ∈ (𝐹𝑦) ↔ (𝑦) ∈ (𝐹𝑦)))
1615ralbidv 3174 . . . . 5 (𝑔 = → (∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ↔ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦)))
1714eqeq1d 2738 . . . . . . 7 (𝑔 = → ((𝑔𝑦) = (𝐹𝑦) ↔ (𝑦) = (𝐹𝑦)))
1817rexralbidv 3214 . . . . . 6 (𝑔 = → (∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦) ↔ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑦) = (𝐹𝑦)))
19 difeq2 4076 . . . . . . . 8 (𝑧 = 𝑤 → (𝐴𝑧) = (𝐴𝑤))
2019raleqdv 3313 . . . . . . 7 (𝑧 = 𝑤 → (∀𝑦 ∈ (𝐴𝑧)(𝑦) = (𝐹𝑦) ↔ ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)))
2120cbvrexvw 3226 . . . . . 6 (∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑦) = (𝐹𝑦) ↔ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦))
2218, 21bitrdi 286 . . . . 5 (𝑔 = → (∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦) ↔ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)))
2313, 16, 223anbi123d 1436 . . . 4 (𝑔 = → ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ↔ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦))))
2414ixpeq2dv 8851 . . . . 5 (𝑔 = X𝑦𝐴 (𝑔𝑦) = X𝑦𝐴 (𝑦))
2524eqeq2d 2747 . . . 4 (𝑔 = → (𝑆 = X𝑦𝐴 (𝑔𝑦) ↔ 𝑆 = X𝑦𝐴 (𝑦)))
2623, 25anbi12d 631 . . 3 (𝑔 = → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦)) ↔ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑦))))
2726cbvexvw 2040 . 2 (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦)) ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑦)))
282, 12, 273bitri 296 1 (𝑆𝐵 ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wral 3064  wrex 3073  Vcvv 3445  cdif 3907   cuni 4865   Fn wfn 6491  cfv 6496  Xcixp 8835  Fincfn 8883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ixp 8836
This theorem is referenced by:  elptr  22924  ptbasin  22928  ptbasfi  22932  ptrecube  36078
  Copyright terms: Public domain W3C validator