MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpt Structured version   Visualization version   GIF version

Theorem elpt 22631
Description: Elementhood in the bases of a product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
elpt (𝑆𝐵 ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑦)))
Distinct variable groups:   𝑔,,𝑤,𝑥,𝑦,𝑧,𝐴   𝑔,𝐹,,𝑤,𝑥,𝑦,𝑧   𝑆,𝑔,,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑔,)   𝑆(𝑦,𝑧,𝑤)

Proof of Theorem elpt
StepHypRef Expression
1 ptbas.1 . . 3 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21eleq2i 2830 . 2 (𝑆𝐵𝑆 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))})
3 simpr 484 . . . . 5 (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦)) → 𝑆 = X𝑦𝐴 (𝑔𝑦))
4 ixpexg 8668 . . . . . 6 (∀𝑦𝐴 (𝑔𝑦) ∈ V → X𝑦𝐴 (𝑔𝑦) ∈ V)
5 fvexd 6771 . . . . . 6 (𝑦𝐴 → (𝑔𝑦) ∈ V)
64, 5mprg 3077 . . . . 5 X𝑦𝐴 (𝑔𝑦) ∈ V
73, 6eqeltrdi 2847 . . . 4 (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦)) → 𝑆 ∈ V)
87exlimiv 1934 . . 3 (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦)) → 𝑆 ∈ V)
9 eqeq1 2742 . . . . 5 (𝑥 = 𝑆 → (𝑥 = X𝑦𝐴 (𝑔𝑦) ↔ 𝑆 = X𝑦𝐴 (𝑔𝑦)))
109anbi2d 628 . . . 4 (𝑥 = 𝑆 → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦))))
1110exbidv 1925 . . 3 (𝑥 = 𝑆 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦))))
128, 11elab3 3610 . 2 (𝑆 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦)))
13 fneq1 6508 . . . . 5 (𝑔 = → (𝑔 Fn 𝐴 Fn 𝐴))
14 fveq1 6755 . . . . . . 7 (𝑔 = → (𝑔𝑦) = (𝑦))
1514eleq1d 2823 . . . . . 6 (𝑔 = → ((𝑔𝑦) ∈ (𝐹𝑦) ↔ (𝑦) ∈ (𝐹𝑦)))
1615ralbidv 3120 . . . . 5 (𝑔 = → (∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ↔ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦)))
1714eqeq1d 2740 . . . . . . 7 (𝑔 = → ((𝑔𝑦) = (𝐹𝑦) ↔ (𝑦) = (𝐹𝑦)))
1817rexralbidv 3229 . . . . . 6 (𝑔 = → (∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦) ↔ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑦) = (𝐹𝑦)))
19 difeq2 4047 . . . . . . . 8 (𝑧 = 𝑤 → (𝐴𝑧) = (𝐴𝑤))
2019raleqdv 3339 . . . . . . 7 (𝑧 = 𝑤 → (∀𝑦 ∈ (𝐴𝑧)(𝑦) = (𝐹𝑦) ↔ ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)))
2120cbvrexvw 3373 . . . . . 6 (∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑦) = (𝐹𝑦) ↔ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦))
2218, 21bitrdi 286 . . . . 5 (𝑔 = → (∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦) ↔ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)))
2313, 16, 223anbi123d 1434 . . . 4 (𝑔 = → ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ↔ ( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦))))
2414ixpeq2dv 8659 . . . . 5 (𝑔 = X𝑦𝐴 (𝑔𝑦) = X𝑦𝐴 (𝑦))
2524eqeq2d 2749 . . . 4 (𝑔 = → (𝑆 = X𝑦𝐴 (𝑔𝑦) ↔ 𝑆 = X𝑦𝐴 (𝑦)))
2623, 25anbi12d 630 . . 3 (𝑔 = → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦)) ↔ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑦))))
2726cbvexvw 2041 . 2 (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑔𝑦)) ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑦)))
282, 12, 273bitri 296 1 (𝑆𝐵 ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ 𝑆 = X𝑦𝐴 (𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  cdif 3880   cuni 4836   Fn wfn 6413  cfv 6418  Xcixp 8643  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ixp 8644
This theorem is referenced by:  elptr  22632  ptbasin  22636  ptbasfi  22640  ptrecube  35704
  Copyright terms: Public domain W3C validator