Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istendo Structured version   Visualization version   GIF version

Theorem istendo 38701
Description: The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in [Crawley] p. 117, penultimate line. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
tendoset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoset.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
istendo ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔   𝑆,𝑓,𝑔
Allowed substitution hints:   𝑅(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝐻(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem istendo
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 tendoset.l . . . 4 = (le‘𝐾)
2 tendoset.h . . . 4 𝐻 = (LHyp‘𝐾)
3 tendoset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 tendoset.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
5 tendoset.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
61, 2, 3, 4, 5tendoset 38700 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐸 = {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))})
76eleq2d 2824 . 2 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸𝑆 ∈ {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))}))
83fvexi 6770 . . . . 5 𝑇 ∈ V
9 fex 7084 . . . . 5 ((𝑆:𝑇𝑇𝑇 ∈ V) → 𝑆 ∈ V)
108, 9mpan2 687 . . . 4 (𝑆:𝑇𝑇𝑆 ∈ V)
11103ad2ant1 1131 . . 3 ((𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓)) → 𝑆 ∈ V)
12 feq1 6565 . . . 4 (𝑠 = 𝑆 → (𝑠:𝑇𝑇𝑆:𝑇𝑇))
13 fveq1 6755 . . . . . 6 (𝑠 = 𝑆 → (𝑠‘(𝑓𝑔)) = (𝑆‘(𝑓𝑔)))
14 fveq1 6755 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝑓) = (𝑆𝑓))
15 fveq1 6755 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝑔) = (𝑆𝑔))
1614, 15coeq12d 5762 . . . . . 6 (𝑠 = 𝑆 → ((𝑠𝑓) ∘ (𝑠𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
1713, 16eqeq12d 2754 . . . . 5 (𝑠 = 𝑆 → ((𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔))))
18172ralbidv 3122 . . . 4 (𝑠 = 𝑆 → (∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔))))
1914fveq2d 6760 . . . . . 6 (𝑠 = 𝑆 → (𝑅‘(𝑠𝑓)) = (𝑅‘(𝑆𝑓)))
2019breq1d 5080 . . . . 5 (𝑠 = 𝑆 → ((𝑅‘(𝑠𝑓)) (𝑅𝑓) ↔ (𝑅‘(𝑆𝑓)) (𝑅𝑓)))
2120ralbidv 3120 . . . 4 (𝑠 = 𝑆 → (∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓) ↔ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓)))
2212, 18, 213anbi123d 1434 . . 3 (𝑠 = 𝑆 → ((𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓)) ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
2311, 22elab3 3610 . 2 (𝑆 ∈ {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))} ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓)))
247, 23bitrdi 286 1 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wral 3063  Vcvv 3422   class class class wbr 5070  ccom 5584  wf 6414  cfv 6418  lecple 16895  LHypclh 37925  LTrncltrn 38042  trLctrl 38099  TEndoctendo 38693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-tendo 38696
This theorem is referenced by:  tendotp  38702  istendod  38703  tendof  38704  tendovalco  38706
  Copyright terms: Public domain W3C validator