| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > istendo | Structured version Visualization version GIF version | ||
| Description: The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in [Crawley] p. 117, penultimate line. (Contributed by NM, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendoset.l | ⊢ ≤ = (le‘𝐾) |
| tendoset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendoset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendoset.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| tendoset.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| istendo | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendoset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | tendoset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | tendoset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | tendoset.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 5 | tendoset.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | tendoset 40753 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐸 = {𝑠 ∣ (𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓))}) |
| 7 | 6 | eleq2d 2814 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ 𝑆 ∈ {𝑠 ∣ (𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓))})) |
| 8 | 3 | fvexi 6872 | . . . . 5 ⊢ 𝑇 ∈ V |
| 9 | fex 7200 | . . . . 5 ⊢ ((𝑆:𝑇⟶𝑇 ∧ 𝑇 ∈ V) → 𝑆 ∈ V) | |
| 10 | 8, 9 | mpan2 691 | . . . 4 ⊢ (𝑆:𝑇⟶𝑇 → 𝑆 ∈ V) |
| 11 | 10 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) → 𝑆 ∈ V) |
| 12 | feq1 6666 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑠:𝑇⟶𝑇 ↔ 𝑆:𝑇⟶𝑇)) | |
| 13 | fveq1 6857 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑠‘(𝑓 ∘ 𝑔)) = (𝑆‘(𝑓 ∘ 𝑔))) | |
| 14 | fveq1 6857 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠‘𝑓) = (𝑆‘𝑓)) | |
| 15 | fveq1 6857 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠‘𝑔) = (𝑆‘𝑔)) | |
| 16 | 14, 15 | coeq12d 5828 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) |
| 17 | 13, 16 | eqeq12d 2745 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ↔ (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)))) |
| 18 | 17 | 2ralbidv 3201 | . . . 4 ⊢ (𝑠 = 𝑆 → (∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ↔ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)))) |
| 19 | 14 | fveq2d 6862 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑅‘(𝑠‘𝑓)) = (𝑅‘(𝑆‘𝑓))) |
| 20 | 19 | breq1d 5117 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓) ↔ (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓))) |
| 21 | 20 | ralbidv 3156 | . . . 4 ⊢ (𝑠 = 𝑆 → (∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓) ↔ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓))) |
| 22 | 12, 18, 21 | 3anbi123d 1438 | . . 3 ⊢ (𝑠 = 𝑆 → ((𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓)) ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
| 23 | 11, 22 | elab3 3653 | . 2 ⊢ (𝑆 ∈ {𝑠 ∣ (𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓))} ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓))) |
| 24 | 7, 23 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 Vcvv 3447 class class class wbr 5107 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 lecple 17227 LHypclh 39978 LTrncltrn 40095 trLctrl 40152 TEndoctendo 40746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-tendo 40749 |
| This theorem is referenced by: tendotp 40755 istendod 40756 tendof 40757 tendovalco 40759 |
| Copyright terms: Public domain | W3C validator |