| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > istendo | Structured version Visualization version GIF version | ||
| Description: The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in [Crawley] p. 117, penultimate line. (Contributed by NM, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendoset.l | ⊢ ≤ = (le‘𝐾) |
| tendoset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendoset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendoset.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| tendoset.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| istendo | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendoset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | tendoset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | tendoset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | tendoset.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 5 | tendoset.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | tendoset 40806 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐸 = {𝑠 ∣ (𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓))}) |
| 7 | 6 | eleq2d 2817 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ 𝑆 ∈ {𝑠 ∣ (𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓))})) |
| 8 | 3 | fvexi 6836 | . . . . 5 ⊢ 𝑇 ∈ V |
| 9 | fex 7160 | . . . . 5 ⊢ ((𝑆:𝑇⟶𝑇 ∧ 𝑇 ∈ V) → 𝑆 ∈ V) | |
| 10 | 8, 9 | mpan2 691 | . . . 4 ⊢ (𝑆:𝑇⟶𝑇 → 𝑆 ∈ V) |
| 11 | 10 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) → 𝑆 ∈ V) |
| 12 | feq1 6629 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑠:𝑇⟶𝑇 ↔ 𝑆:𝑇⟶𝑇)) | |
| 13 | fveq1 6821 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑠‘(𝑓 ∘ 𝑔)) = (𝑆‘(𝑓 ∘ 𝑔))) | |
| 14 | fveq1 6821 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠‘𝑓) = (𝑆‘𝑓)) | |
| 15 | fveq1 6821 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠‘𝑔) = (𝑆‘𝑔)) | |
| 16 | 14, 15 | coeq12d 5803 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) |
| 17 | 13, 16 | eqeq12d 2747 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ↔ (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)))) |
| 18 | 17 | 2ralbidv 3196 | . . . 4 ⊢ (𝑠 = 𝑆 → (∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ↔ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)))) |
| 19 | 14 | fveq2d 6826 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑅‘(𝑠‘𝑓)) = (𝑅‘(𝑆‘𝑓))) |
| 20 | 19 | breq1d 5099 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓) ↔ (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓))) |
| 21 | 20 | ralbidv 3155 | . . . 4 ⊢ (𝑠 = 𝑆 → (∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓) ↔ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓))) |
| 22 | 12, 18, 21 | 3anbi123d 1438 | . . 3 ⊢ (𝑠 = 𝑆 → ((𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓)) ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
| 23 | 11, 22 | elab3 3637 | . 2 ⊢ (𝑆 ∈ {𝑠 ∣ (𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓))} ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓))) |
| 24 | 7, 23 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 Vcvv 3436 class class class wbr 5089 ∘ ccom 5618 ⟶wf 6477 ‘cfv 6481 lecple 17168 LHypclh 40031 LTrncltrn 40148 trLctrl 40205 TEndoctendo 40799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-tendo 40802 |
| This theorem is referenced by: tendotp 40808 istendod 40809 tendof 40810 tendovalco 40812 |
| Copyright terms: Public domain | W3C validator |