Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istendo Structured version   Visualization version   GIF version

Theorem istendo 40739
Description: The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in [Crawley] p. 117, penultimate line. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
tendoset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoset.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
istendo ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔   𝑆,𝑓,𝑔
Allowed substitution hints:   𝑅(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝐻(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem istendo
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 tendoset.l . . . 4 = (le‘𝐾)
2 tendoset.h . . . 4 𝐻 = (LHyp‘𝐾)
3 tendoset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 tendoset.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
5 tendoset.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
61, 2, 3, 4, 5tendoset 40738 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐸 = {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))})
76eleq2d 2814 . 2 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸𝑆 ∈ {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))}))
83fvexi 6836 . . . . 5 𝑇 ∈ V
9 fex 7162 . . . . 5 ((𝑆:𝑇𝑇𝑇 ∈ V) → 𝑆 ∈ V)
108, 9mpan2 691 . . . 4 (𝑆:𝑇𝑇𝑆 ∈ V)
11103ad2ant1 1133 . . 3 ((𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓)) → 𝑆 ∈ V)
12 feq1 6630 . . . 4 (𝑠 = 𝑆 → (𝑠:𝑇𝑇𝑆:𝑇𝑇))
13 fveq1 6821 . . . . . 6 (𝑠 = 𝑆 → (𝑠‘(𝑓𝑔)) = (𝑆‘(𝑓𝑔)))
14 fveq1 6821 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝑓) = (𝑆𝑓))
15 fveq1 6821 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝑔) = (𝑆𝑔))
1614, 15coeq12d 5807 . . . . . 6 (𝑠 = 𝑆 → ((𝑠𝑓) ∘ (𝑠𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
1713, 16eqeq12d 2745 . . . . 5 (𝑠 = 𝑆 → ((𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔))))
18172ralbidv 3193 . . . 4 (𝑠 = 𝑆 → (∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔))))
1914fveq2d 6826 . . . . . 6 (𝑠 = 𝑆 → (𝑅‘(𝑠𝑓)) = (𝑅‘(𝑆𝑓)))
2019breq1d 5102 . . . . 5 (𝑠 = 𝑆 → ((𝑅‘(𝑠𝑓)) (𝑅𝑓) ↔ (𝑅‘(𝑆𝑓)) (𝑅𝑓)))
2120ralbidv 3152 . . . 4 (𝑠 = 𝑆 → (∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓) ↔ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓)))
2212, 18, 213anbi123d 1438 . . 3 (𝑠 = 𝑆 → ((𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓)) ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
2311, 22elab3 3642 . 2 (𝑆 ∈ {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))} ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓)))
247, 23bitrdi 287 1 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3436   class class class wbr 5092  ccom 5623  wf 6478  cfv 6482  lecple 17168  LHypclh 39963  LTrncltrn 40080  trLctrl 40137  TEndoctendo 40731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-tendo 40734
This theorem is referenced by:  tendotp  40740  istendod  40741  tendof  40742  tendovalco  40744
  Copyright terms: Public domain W3C validator