Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istendo Structured version   Visualization version   GIF version

Theorem istendo 40265
Description: The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in [Crawley] p. 117, penultimate line. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l ≀ = (leβ€˜πΎ)
tendoset.h 𝐻 = (LHypβ€˜πΎ)
tendoset.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendoset.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
tendoset.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
istendo ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝑆 ∈ 𝐸 ↔ (𝑆:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘†β€˜(𝑓 ∘ 𝑔)) = ((π‘†β€˜π‘“) ∘ (π‘†β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘†β€˜π‘“)) ≀ (π‘…β€˜π‘“))))
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,π‘Š,𝑔   𝑆,𝑓,𝑔
Allowed substitution hints:   𝑅(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝐻(𝑓,𝑔)   ≀ (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem istendo
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 tendoset.l . . . 4 ≀ = (leβ€˜πΎ)
2 tendoset.h . . . 4 𝐻 = (LHypβ€˜πΎ)
3 tendoset.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
4 tendoset.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
5 tendoset.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
61, 2, 3, 4, 5tendoset 40264 . . 3 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐸 = {𝑠 ∣ (𝑠:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))})
76eleq2d 2815 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝑆 ∈ 𝐸 ↔ 𝑆 ∈ {𝑠 ∣ (𝑠:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))}))
83fvexi 6916 . . . . 5 𝑇 ∈ V
9 fex 7244 . . . . 5 ((𝑆:π‘‡βŸΆπ‘‡ ∧ 𝑇 ∈ V) β†’ 𝑆 ∈ V)
108, 9mpan2 689 . . . 4 (𝑆:π‘‡βŸΆπ‘‡ β†’ 𝑆 ∈ V)
11103ad2ant1 1130 . . 3 ((𝑆:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘†β€˜(𝑓 ∘ 𝑔)) = ((π‘†β€˜π‘“) ∘ (π‘†β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘†β€˜π‘“)) ≀ (π‘…β€˜π‘“)) β†’ 𝑆 ∈ V)
12 feq1 6708 . . . 4 (𝑠 = 𝑆 β†’ (𝑠:π‘‡βŸΆπ‘‡ ↔ 𝑆:π‘‡βŸΆπ‘‡))
13 fveq1 6901 . . . . . 6 (𝑠 = 𝑆 β†’ (π‘ β€˜(𝑓 ∘ 𝑔)) = (π‘†β€˜(𝑓 ∘ 𝑔)))
14 fveq1 6901 . . . . . . 7 (𝑠 = 𝑆 β†’ (π‘ β€˜π‘“) = (π‘†β€˜π‘“))
15 fveq1 6901 . . . . . . 7 (𝑠 = 𝑆 β†’ (π‘ β€˜π‘”) = (π‘†β€˜π‘”))
1614, 15coeq12d 5871 . . . . . 6 (𝑠 = 𝑆 β†’ ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) = ((π‘†β€˜π‘“) ∘ (π‘†β€˜π‘”)))
1713, 16eqeq12d 2744 . . . . 5 (𝑠 = 𝑆 β†’ ((π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ↔ (π‘†β€˜(𝑓 ∘ 𝑔)) = ((π‘†β€˜π‘“) ∘ (π‘†β€˜π‘”))))
18172ralbidv 3216 . . . 4 (𝑠 = 𝑆 β†’ (βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ↔ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘†β€˜(𝑓 ∘ 𝑔)) = ((π‘†β€˜π‘“) ∘ (π‘†β€˜π‘”))))
1914fveq2d 6906 . . . . . 6 (𝑠 = 𝑆 β†’ (π‘…β€˜(π‘ β€˜π‘“)) = (π‘…β€˜(π‘†β€˜π‘“)))
2019breq1d 5162 . . . . 5 (𝑠 = 𝑆 β†’ ((π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“) ↔ (π‘…β€˜(π‘†β€˜π‘“)) ≀ (π‘…β€˜π‘“)))
2120ralbidv 3175 . . . 4 (𝑠 = 𝑆 β†’ (βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“) ↔ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘†β€˜π‘“)) ≀ (π‘…β€˜π‘“)))
2212, 18, 213anbi123d 1432 . . 3 (𝑠 = 𝑆 β†’ ((𝑠:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“)) ↔ (𝑆:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘†β€˜(𝑓 ∘ 𝑔)) = ((π‘†β€˜π‘“) ∘ (π‘†β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘†β€˜π‘“)) ≀ (π‘…β€˜π‘“))))
2311, 22elab3 3677 . 2 (𝑆 ∈ {𝑠 ∣ (𝑠:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))} ↔ (𝑆:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘†β€˜(𝑓 ∘ 𝑔)) = ((π‘†β€˜π‘“) ∘ (π‘†β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘†β€˜π‘“)) ≀ (π‘…β€˜π‘“)))
247, 23bitrdi 286 1 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝑆 ∈ 𝐸 ↔ (𝑆:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘†β€˜(𝑓 ∘ 𝑔)) = ((π‘†β€˜π‘“) ∘ (π‘†β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘†β€˜π‘“)) ≀ (π‘…β€˜π‘“))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  {cab 2705  βˆ€wral 3058  Vcvv 3473   class class class wbr 5152   ∘ ccom 5686  βŸΆwf 6549  β€˜cfv 6553  lecple 17247  LHypclh 39489  LTrncltrn 39606  trLctrl 39663  TEndoctendo 40257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-map 8853  df-tendo 40260
This theorem is referenced by:  tendotp  40266  istendod  40267  tendof  40268  tendovalco  40270
  Copyright terms: Public domain W3C validator