Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > istendo | Structured version Visualization version GIF version |
Description: The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in [Crawley] p. 117, penultimate line. (Contributed by NM, 8-Jun-2013.) |
Ref | Expression |
---|---|
tendoset.l | ⊢ ≤ = (le‘𝐾) |
tendoset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendoset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendoset.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
tendoset.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
istendo | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | tendoset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | tendoset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | tendoset.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
5 | tendoset.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | tendoset 38773 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐸 = {𝑠 ∣ (𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓))}) |
7 | 6 | eleq2d 2824 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ 𝑆 ∈ {𝑠 ∣ (𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓))})) |
8 | 3 | fvexi 6788 | . . . . 5 ⊢ 𝑇 ∈ V |
9 | fex 7102 | . . . . 5 ⊢ ((𝑆:𝑇⟶𝑇 ∧ 𝑇 ∈ V) → 𝑆 ∈ V) | |
10 | 8, 9 | mpan2 688 | . . . 4 ⊢ (𝑆:𝑇⟶𝑇 → 𝑆 ∈ V) |
11 | 10 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) → 𝑆 ∈ V) |
12 | feq1 6581 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑠:𝑇⟶𝑇 ↔ 𝑆:𝑇⟶𝑇)) | |
13 | fveq1 6773 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑠‘(𝑓 ∘ 𝑔)) = (𝑆‘(𝑓 ∘ 𝑔))) | |
14 | fveq1 6773 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠‘𝑓) = (𝑆‘𝑓)) | |
15 | fveq1 6773 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠‘𝑔) = (𝑆‘𝑔)) | |
16 | 14, 15 | coeq12d 5773 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) |
17 | 13, 16 | eqeq12d 2754 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ↔ (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)))) |
18 | 17 | 2ralbidv 3129 | . . . 4 ⊢ (𝑠 = 𝑆 → (∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ↔ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)))) |
19 | 14 | fveq2d 6778 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑅‘(𝑠‘𝑓)) = (𝑅‘(𝑆‘𝑓))) |
20 | 19 | breq1d 5084 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓) ↔ (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓))) |
21 | 20 | ralbidv 3112 | . . . 4 ⊢ (𝑠 = 𝑆 → (∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓) ↔ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓))) |
22 | 12, 18, 21 | 3anbi123d 1435 | . . 3 ⊢ (𝑠 = 𝑆 → ((𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓)) ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
23 | 11, 22 | elab3 3617 | . 2 ⊢ (𝑆 ∈ {𝑠 ∣ (𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓))} ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓))) |
24 | 7, 23 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 Vcvv 3432 class class class wbr 5074 ∘ ccom 5593 ⟶wf 6429 ‘cfv 6433 lecple 16969 LHypclh 37998 LTrncltrn 38115 trLctrl 38172 TEndoctendo 38766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-tendo 38769 |
This theorem is referenced by: tendotp 38775 istendod 38776 tendof 38777 tendovalco 38779 |
Copyright terms: Public domain | W3C validator |