Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istendo Structured version   Visualization version   GIF version

Theorem istendo 38002
Description: The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in [Crawley] p. 117, penultimate line. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
tendoset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoset.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
istendo ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔   𝑆,𝑓,𝑔
Allowed substitution hints:   𝑅(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝐻(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem istendo
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 tendoset.l . . . 4 = (le‘𝐾)
2 tendoset.h . . . 4 𝐻 = (LHyp‘𝐾)
3 tendoset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 tendoset.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
5 tendoset.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
61, 2, 3, 4, 5tendoset 38001 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐸 = {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))})
76eleq2d 2901 . 2 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸𝑆 ∈ {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))}))
83fvexi 6676 . . . . 5 𝑇 ∈ V
9 fex 6981 . . . . 5 ((𝑆:𝑇𝑇𝑇 ∈ V) → 𝑆 ∈ V)
108, 9mpan2 690 . . . 4 (𝑆:𝑇𝑇𝑆 ∈ V)
11103ad2ant1 1130 . . 3 ((𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓)) → 𝑆 ∈ V)
12 feq1 6485 . . . 4 (𝑠 = 𝑆 → (𝑠:𝑇𝑇𝑆:𝑇𝑇))
13 fveq1 6661 . . . . . 6 (𝑠 = 𝑆 → (𝑠‘(𝑓𝑔)) = (𝑆‘(𝑓𝑔)))
14 fveq1 6661 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝑓) = (𝑆𝑓))
15 fveq1 6661 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝑔) = (𝑆𝑔))
1614, 15coeq12d 5723 . . . . . 6 (𝑠 = 𝑆 → ((𝑠𝑓) ∘ (𝑠𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
1713, 16eqeq12d 2840 . . . . 5 (𝑠 = 𝑆 → ((𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔))))
18172ralbidv 3194 . . . 4 (𝑠 = 𝑆 → (∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔))))
1914fveq2d 6666 . . . . . 6 (𝑠 = 𝑆 → (𝑅‘(𝑠𝑓)) = (𝑅‘(𝑆𝑓)))
2019breq1d 5063 . . . . 5 (𝑠 = 𝑆 → ((𝑅‘(𝑠𝑓)) (𝑅𝑓) ↔ (𝑅‘(𝑆𝑓)) (𝑅𝑓)))
2120ralbidv 3192 . . . 4 (𝑠 = 𝑆 → (∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓) ↔ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓)))
2212, 18, 213anbi123d 1433 . . 3 (𝑠 = 𝑆 → ((𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓)) ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
2311, 22elab3 3661 . 2 (𝑆 ∈ {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))} ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓)))
247, 23syl6bb 290 1 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  {cab 2802  wral 3133  Vcvv 3481   class class class wbr 5053  ccom 5547  wf 6340  cfv 6344  lecple 16575  LHypclh 37226  LTrncltrn 37343  trLctrl 37400  TEndoctendo 37994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-op 4558  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8405  df-tendo 37997
This theorem is referenced by:  tendotp  38003  istendod  38004  tendof  38005  tendovalco  38007
  Copyright terms: Public domain W3C validator