MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnum2 Structured version   Visualization version   GIF version

Theorem isnum2 9964
Description: A way to express well-orderability without bound or distinct variables. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
isnum2 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem isnum2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardf2 9962 . . . 4 card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}⟶On
21fdmi 6722 . . 3 dom card = {𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}
32eleq2i 2827 . 2 (𝐴 ∈ dom card ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦})
4 relen 8969 . . . . 5 Rel ≈
54brrelex2i 5716 . . . 4 (𝑥𝐴𝐴 ∈ V)
65rexlimivw 3138 . . 3 (∃𝑥 ∈ On 𝑥𝐴𝐴 ∈ V)
7 breq2 5128 . . . 4 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
87rexbidv 3165 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑥𝑦 ↔ ∃𝑥 ∈ On 𝑥𝐴))
96, 8elab3 3670 . 2 (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦} ↔ ∃𝑥 ∈ On 𝑥𝐴)
103, 9bitri 275 1 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  {cab 2714  wrex 3061  Vcvv 3464   class class class wbr 5124  dom cdm 5659  Oncon0 6357  cen 8961  cardccrd 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-fun 6538  df-fn 6539  df-f 6540  df-en 8965  df-card 9958
This theorem is referenced by:  isnumi  9965  ennum  9966  xpnum  9970  cardval3  9971  dfac10c  10158  isfin7-2  10415  numth2  10490  inawinalem  10708
  Copyright terms: Public domain W3C validator