MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnum2 Structured version   Visualization version   GIF version

Theorem isnum2 9845
Description: A way to express well-orderability without bound or distinct variables. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
isnum2 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem isnum2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardf2 9843 . . . 4 card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}⟶On
21fdmi 6667 . . 3 dom card = {𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}
32eleq2i 2825 . 2 (𝐴 ∈ dom card ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦})
4 relen 8880 . . . . 5 Rel ≈
54brrelex2i 5676 . . . 4 (𝑥𝐴𝐴 ∈ V)
65rexlimivw 3130 . . 3 (∃𝑥 ∈ On 𝑥𝐴𝐴 ∈ V)
7 breq2 5097 . . . 4 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
87rexbidv 3157 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑥𝑦 ↔ ∃𝑥 ∈ On 𝑥𝐴))
96, 8elab3 3638 . 2 (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦} ↔ ∃𝑥 ∈ On 𝑥𝐴)
103, 9bitri 275 1 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  Vcvv 3437   class class class wbr 5093  dom cdm 5619  Oncon0 6311  cen 8872  cardccrd 9835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-fun 6488  df-fn 6489  df-f 6490  df-en 8876  df-card 9839
This theorem is referenced by:  isnumi  9846  ennum  9847  xpnum  9851  cardval3  9852  dfac10c  10037  isfin7-2  10294  numth2  10369  inawinalem  10587
  Copyright terms: Public domain W3C validator