Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnum2 | Structured version Visualization version GIF version |
Description: A way to express well-orderability without bound or distinct variables. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
isnum2 | ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 9745 | . . . 4 ⊢ card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥 ≈ 𝑦}⟶On | |
2 | 1 | fdmi 6642 | . . 3 ⊢ dom card = {𝑦 ∣ ∃𝑥 ∈ On 𝑥 ≈ 𝑦} |
3 | 2 | eleq2i 2828 | . 2 ⊢ (𝐴 ∈ dom card ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑥 ≈ 𝑦}) |
4 | relen 8769 | . . . . 5 ⊢ Rel ≈ | |
5 | 4 | brrelex2i 5655 | . . . 4 ⊢ (𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
6 | 5 | rexlimivw 3145 | . . 3 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
7 | breq2 5085 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 ≈ 𝑦 ↔ 𝑥 ≈ 𝐴)) | |
8 | 7 | rexbidv 3172 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑥 ≈ 𝑦 ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴)) |
9 | 6, 8 | elab3 3622 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑥 ≈ 𝑦} ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
10 | 3, 9 | bitri 275 | 1 ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2104 {cab 2713 ∃wrex 3071 Vcvv 3437 class class class wbr 5081 dom cdm 5600 Oncon0 6281 ≈ cen 8761 cardccrd 9737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-fun 6460 df-fn 6461 df-f 6462 df-en 8765 df-card 9741 |
This theorem is referenced by: isnumi 9748 ennum 9749 xpnum 9753 cardval3 9754 dfac10c 9940 isfin7-2 10198 numth2 10273 inawinalem 10491 |
Copyright terms: Public domain | W3C validator |