MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnum2 Structured version   Visualization version   GIF version

Theorem isnum2 9860
Description: A way to express well-orderability without bound or distinct variables. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
isnum2 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem isnum2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardf2 9858 . . . 4 card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}⟶On
21fdmi 6667 . . 3 dom card = {𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}
32eleq2i 2820 . 2 (𝐴 ∈ dom card ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦})
4 relen 8884 . . . . 5 Rel ≈
54brrelex2i 5680 . . . 4 (𝑥𝐴𝐴 ∈ V)
65rexlimivw 3126 . . 3 (∃𝑥 ∈ On 𝑥𝐴𝐴 ∈ V)
7 breq2 5099 . . . 4 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
87rexbidv 3153 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑥𝑦 ↔ ∃𝑥 ∈ On 𝑥𝐴))
96, 8elab3 3644 . 2 (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦} ↔ ∃𝑥 ∈ On 𝑥𝐴)
103, 9bitri 275 1 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3438   class class class wbr 5095  dom cdm 5623  Oncon0 6311  cen 8876  cardccrd 9850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-fun 6488  df-fn 6489  df-f 6490  df-en 8880  df-card 9854
This theorem is referenced by:  isnumi  9861  ennum  9862  xpnum  9866  cardval3  9867  dfac10c  10052  isfin7-2  10309  numth2  10384  inawinalem  10602
  Copyright terms: Public domain W3C validator