![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnum2 | Structured version Visualization version GIF version |
Description: A way to express well-orderability without bound or distinct variables. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
isnum2 | ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 9981 | . . . 4 ⊢ card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥 ≈ 𝑦}⟶On | |
2 | 1 | fdmi 6748 | . . 3 ⊢ dom card = {𝑦 ∣ ∃𝑥 ∈ On 𝑥 ≈ 𝑦} |
3 | 2 | eleq2i 2831 | . 2 ⊢ (𝐴 ∈ dom card ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑥 ≈ 𝑦}) |
4 | relen 8989 | . . . . 5 ⊢ Rel ≈ | |
5 | 4 | brrelex2i 5746 | . . . 4 ⊢ (𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
6 | 5 | rexlimivw 3149 | . . 3 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
7 | breq2 5152 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 ≈ 𝑦 ↔ 𝑥 ≈ 𝐴)) | |
8 | 7 | rexbidv 3177 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑥 ≈ 𝑦 ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴)) |
9 | 6, 8 | elab3 3689 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑥 ≈ 𝑦} ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
10 | 3, 9 | bitri 275 | 1 ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 Vcvv 3478 class class class wbr 5148 dom cdm 5689 Oncon0 6386 ≈ cen 8981 cardccrd 9973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-fun 6565 df-fn 6566 df-f 6567 df-en 8985 df-card 9977 |
This theorem is referenced by: isnumi 9984 ennum 9985 xpnum 9989 cardval3 9990 dfac10c 10177 isfin7-2 10434 numth2 10509 inawinalem 10727 |
Copyright terms: Public domain | W3C validator |