| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnum2 | Structured version Visualization version GIF version | ||
| Description: A way to express well-orderability without bound or distinct variables. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| Ref | Expression |
|---|---|
| isnum2 | ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardf2 9903 | . . . 4 ⊢ card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥 ≈ 𝑦}⟶On | |
| 2 | 1 | fdmi 6702 | . . 3 ⊢ dom card = {𝑦 ∣ ∃𝑥 ∈ On 𝑥 ≈ 𝑦} |
| 3 | 2 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ dom card ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑥 ≈ 𝑦}) |
| 4 | relen 8926 | . . . . 5 ⊢ Rel ≈ | |
| 5 | 4 | brrelex2i 5698 | . . . 4 ⊢ (𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
| 6 | 5 | rexlimivw 3131 | . . 3 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → 𝐴 ∈ V) |
| 7 | breq2 5114 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 ≈ 𝑦 ↔ 𝑥 ≈ 𝐴)) | |
| 8 | 7 | rexbidv 3158 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑥 ≈ 𝑦 ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴)) |
| 9 | 6, 8 | elab3 3656 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑥 ≈ 𝑦} ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
| 10 | 3, 9 | bitri 275 | 1 ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 Vcvv 3450 class class class wbr 5110 dom cdm 5641 Oncon0 6335 ≈ cen 8918 cardccrd 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-fun 6516 df-fn 6517 df-f 6518 df-en 8922 df-card 9899 |
| This theorem is referenced by: isnumi 9906 ennum 9907 xpnum 9911 cardval3 9912 dfac10c 10099 isfin7-2 10356 numth2 10431 inawinalem 10649 |
| Copyright terms: Public domain | W3C validator |