| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metuval | Structured version Visualization version GIF version | ||
| Description: Value of the uniform structure generated by metric 𝐷. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| metuval | ⊢ (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-metu 21288 | . 2 ⊢ metUnif = (𝑑 ∈ ∪ ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) | |
| 3 | 2 | dmeqd 5845 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom 𝑑 = dom 𝐷) |
| 4 | 3 | dmeqd 5845 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = dom dom 𝐷) |
| 5 | psmetdmdm 24218 | . . . . . 6 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝐷) |
| 7 | 4, 6 | eqtr4d 2769 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋) |
| 8 | 7 | sqxpeqd 5648 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑 × dom dom 𝑑) = (𝑋 × 𝑋)) |
| 9 | simplr 768 | . . . . . . 7 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → 𝑑 = 𝐷) | |
| 10 | 9 | cnveqd 5815 | . . . . . 6 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → ◡𝑑 = ◡𝐷) |
| 11 | 10 | imaeq1d 6008 | . . . . 5 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → (◡𝑑 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑎))) |
| 12 | 11 | mpteq2dva 5184 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
| 13 | 12 | rneqd 5878 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
| 14 | 8, 13 | oveq12d 7364 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) |
| 15 | elfvunirn 6852 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ ∪ ran PsMet) | |
| 16 | ovexd 7381 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∈ V) | |
| 17 | 1, 14, 15, 16 | fvmptd2 6937 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cuni 4859 ↦ cmpt 5172 × cxp 5614 ◡ccnv 5615 dom cdm 5616 ran crn 5617 “ cima 5619 ‘cfv 6481 (class class class)co 7346 0cc0 11003 ℝ+crp 12887 [,)cico 13244 PsMetcpsmet 21273 filGencfg 21278 metUnifcmetu 21280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-xr 11147 df-psmet 21281 df-metu 21288 |
| This theorem is referenced by: metuust 24473 cfilucfil2 24474 metuel 24477 psmetutop 24480 restmetu 24483 metucn 24484 |
| Copyright terms: Public domain | W3C validator |