| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metuval | Structured version Visualization version GIF version | ||
| Description: Value of the uniform structure generated by metric 𝐷. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| metuval | ⊢ (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-metu 21270 | . 2 ⊢ metUnif = (𝑑 ∈ ∪ ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) | |
| 3 | 2 | dmeqd 5872 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom 𝑑 = dom 𝐷) |
| 4 | 3 | dmeqd 5872 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = dom dom 𝐷) |
| 5 | psmetdmdm 24200 | . . . . . 6 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝐷) |
| 7 | 4, 6 | eqtr4d 2768 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋) |
| 8 | 7 | sqxpeqd 5673 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑 × dom dom 𝑑) = (𝑋 × 𝑋)) |
| 9 | simplr 768 | . . . . . . 7 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → 𝑑 = 𝐷) | |
| 10 | 9 | cnveqd 5842 | . . . . . 6 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → ◡𝑑 = ◡𝐷) |
| 11 | 10 | imaeq1d 6033 | . . . . 5 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → (◡𝑑 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑎))) |
| 12 | 11 | mpteq2dva 5203 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
| 13 | 12 | rneqd 5905 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
| 14 | 8, 13 | oveq12d 7408 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) |
| 15 | elfvunirn 6893 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ ∪ ran PsMet) | |
| 16 | ovexd 7425 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∈ V) | |
| 17 | 1, 14, 15, 16 | fvmptd2 6979 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cuni 4874 ↦ cmpt 5191 × cxp 5639 ◡ccnv 5640 dom cdm 5641 ran crn 5642 “ cima 5644 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ℝ+crp 12958 [,)cico 13315 PsMetcpsmet 21255 filGencfg 21260 metUnifcmetu 21262 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-xr 11219 df-psmet 21263 df-metu 21270 |
| This theorem is referenced by: metuust 24455 cfilucfil2 24456 metuel 24459 psmetutop 24462 restmetu 24465 metucn 24466 |
| Copyright terms: Public domain | W3C validator |