| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metuval | Structured version Visualization version GIF version | ||
| Description: Value of the uniform structure generated by metric 𝐷. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| metuval | ⊢ (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-metu 21292 | . 2 ⊢ metUnif = (𝑑 ∈ ∪ ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) | |
| 3 | 2 | dmeqd 5849 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom 𝑑 = dom 𝐷) |
| 4 | 3 | dmeqd 5849 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = dom dom 𝐷) |
| 5 | psmetdmdm 24221 | . . . . . 6 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝐷) |
| 7 | 4, 6 | eqtr4d 2771 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋) |
| 8 | 7 | sqxpeqd 5651 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑 × dom dom 𝑑) = (𝑋 × 𝑋)) |
| 9 | simplr 768 | . . . . . . 7 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → 𝑑 = 𝐷) | |
| 10 | 9 | cnveqd 5819 | . . . . . 6 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → ◡𝑑 = ◡𝐷) |
| 11 | 10 | imaeq1d 6012 | . . . . 5 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → (◡𝑑 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑎))) |
| 12 | 11 | mpteq2dva 5186 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
| 13 | 12 | rneqd 5882 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))) = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
| 14 | 8, 13 | oveq12d 7370 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎)))) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) |
| 15 | elfvunirn 6858 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ ∪ ran PsMet) | |
| 16 | ovexd 7387 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∈ V) | |
| 17 | 1, 14, 15, 16 | fvmptd2 6943 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∪ cuni 4858 ↦ cmpt 5174 × cxp 5617 ◡ccnv 5618 dom cdm 5619 ran crn 5620 “ cima 5622 ‘cfv 6486 (class class class)co 7352 0cc0 11013 ℝ+crp 12892 [,)cico 13249 PsMetcpsmet 21277 filGencfg 21282 metUnifcmetu 21284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-xr 11157 df-psmet 21285 df-metu 21292 |
| This theorem is referenced by: metuust 24476 cfilucfil2 24477 metuel 24480 psmetutop 24483 restmetu 24486 metucn 24487 |
| Copyright terms: Public domain | W3C validator |