MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metuval Structured version   Visualization version   GIF version

Theorem metuval 24444
Description: Value of the uniform structure generated by metric 𝐷. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
metuval (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))))
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎

Proof of Theorem metuval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 df-metu 21270 . 2 metUnif = (𝑑 ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))))
2 simpr 484 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
32dmeqd 5872 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom 𝑑 = dom 𝐷)
43dmeqd 5872 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = dom dom 𝐷)
5 psmetdmdm 24200 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
65adantr 480 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝐷)
74, 6eqtr4d 2768 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
87sqxpeqd 5673 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑 × dom dom 𝑑) = (𝑋 × 𝑋))
9 simplr 768 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → 𝑑 = 𝐷)
109cnveqd 5842 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → 𝑑 = 𝐷)
1110imaeq1d 6033 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → (𝑑 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑎)))
1211mpteq2dva 5203 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))))
1312rneqd 5905 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎))) = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))))
148, 13oveq12d 7408 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))))
15 elfvunirn 6893 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ran PsMet)
16 ovexd 7425 . 2 (𝐷 ∈ (PsMet‘𝑋) → ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∈ V)
171, 14, 15, 16fvmptd2 6979 1 (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450   cuni 4874  cmpt 5191   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  cfv 6514  (class class class)co 7390  0cc0 11075  +crp 12958  [,)cico 13315  PsMetcpsmet 21255  filGencfg 21260  metUnifcmetu 21262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-xr 11219  df-psmet 21263  df-metu 21270
This theorem is referenced by:  metuust  24455  cfilucfil2  24456  metuel  24459  psmetutop  24462  restmetu  24465  metucn  24466
  Copyright terms: Public domain W3C validator