MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metuval Structured version   Visualization version   GIF version

Theorem metuval 23611
Description: Value of the uniform structure generated by metric 𝐷. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
metuval (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))))
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎

Proof of Theorem metuval
Dummy variables 𝑢 𝑑 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-metu 20509 . 2 metUnif = (𝑑 ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))))
2 simpr 484 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
32dmeqd 5803 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom 𝑑 = dom 𝐷)
43dmeqd 5803 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = dom dom 𝐷)
5 psmetdmdm 23366 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
65adantr 480 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → 𝑋 = dom dom 𝐷)
74, 6eqtr4d 2781 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
87sqxpeqd 5612 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (dom dom 𝑑 × dom dom 𝑑) = (𝑋 × 𝑋))
9 simplr 765 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → 𝑑 = 𝐷)
109cnveqd 5773 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → 𝑑 = 𝐷)
1110imaeq1d 5957 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) ∧ 𝑎 ∈ ℝ+) → (𝑑 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑎)))
1211mpteq2dva 5170 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))))
1312rneqd 5836 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎))) = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))))
148, 13oveq12d 7273 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑑 = 𝐷) → ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))))
15 elfvdm 6788 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet)
16 fveq2 6756 . . . . . 6 (𝑥 = 𝑋 → (PsMet‘𝑥) = (PsMet‘𝑋))
1716eleq2d 2824 . . . . 5 (𝑥 = 𝑋 → (𝐷 ∈ (PsMet‘𝑥) ↔ 𝐷 ∈ (PsMet‘𝑋)))
1817rspcev 3552 . . . 4 ((𝑋 ∈ dom PsMet ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥))
1915, 18mpancom 684 . . 3 (𝐷 ∈ (PsMet‘𝑋) → ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥))
20 df-psmet 20502 . . . . 5 PsMet = (𝑦 ∈ V ↦ {𝑢 ∈ (ℝ*m (𝑦 × 𝑦)) ∣ ∀𝑧𝑦 ((𝑧𝑢𝑧) = 0 ∧ ∀𝑤𝑦𝑣𝑦 (𝑧𝑢𝑤) ≤ ((𝑣𝑢𝑧) +𝑒 (𝑣𝑢𝑤)))})
2120funmpt2 6457 . . . 4 Fun PsMet
22 elunirn 7106 . . . 4 (Fun PsMet → (𝐷 ran PsMet ↔ ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥)))
2321, 22ax-mp 5 . . 3 (𝐷 ran PsMet ↔ ∃𝑥 ∈ dom PsMet𝐷 ∈ (PsMet‘𝑥))
2419, 23sylibr 233 . 2 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ran PsMet)
25 ovexd 7290 . 2 (𝐷 ∈ (PsMet‘𝑋) → ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∈ V)
261, 14, 24, 25fvmptd2 6865 1 (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422   cuni 4836   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  Fun wfun 6412  cfv 6418  (class class class)co 7255  m cmap 8573  0cc0 10802  *cxr 10939  cle 10941  +crp 12659   +𝑒 cxad 12775  [,)cico 13010  PsMetcpsmet 20494  filGencfg 20499  metUnifcmetu 20501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-xr 10944  df-psmet 20502  df-metu 20509
This theorem is referenced by:  metuust  23622  cfilucfil2  23623  metuel  23626  psmetutop  23629  restmetu  23632  metucn  23633
  Copyright terms: Public domain W3C validator