MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustbas Structured version   Visualization version   GIF version

Theorem ustbas 24226
Description: Recover the base of an uniform structure 𝑈. ran UnifOn is to UnifOn what Top is to TopOn. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Hypothesis
Ref Expression
ustbas.1 𝑋 = dom 𝑈
Assertion
Ref Expression
ustbas (𝑈 ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋))

Proof of Theorem ustbas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ustfn 24200 . . . 4 UnifOn Fn V
2 fnfun 6662 . . . 4 (UnifOn Fn V → Fun UnifOn)
3 elunirn 7268 . . . 4 (Fun UnifOn → (𝑈 ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)))
41, 2, 3mp2b 10 . . 3 (𝑈 ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))
5 ustbas2 24224 . . . . . . . 8 (𝑈 ∈ (UnifOn‘𝑥) → 𝑥 = dom 𝑈)
6 ustbas.1 . . . . . . . 8 𝑋 = dom 𝑈
75, 6eqtr4di 2784 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑥) → 𝑥 = 𝑋)
87fveq2d 6907 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑥) → (UnifOn‘𝑥) = (UnifOn‘𝑋))
98eleq2d 2812 . . . . 5 (𝑈 ∈ (UnifOn‘𝑥) → (𝑈 ∈ (UnifOn‘𝑥) ↔ 𝑈 ∈ (UnifOn‘𝑋)))
109ibi 266 . . . 4 (𝑈 ∈ (UnifOn‘𝑥) → 𝑈 ∈ (UnifOn‘𝑋))
1110rexlimivw 3141 . . 3 (∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥) → 𝑈 ∈ (UnifOn‘𝑋))
124, 11sylbi 216 . 2 (𝑈 ran UnifOn → 𝑈 ∈ (UnifOn‘𝑋))
13 elfvunirn 6935 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
1412, 13impbii 208 1 (𝑈 ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wcel 2099  wrex 3060  Vcvv 3462   cuni 4915  dom cdm 5684  ran crn 5685  Fun wfun 6550   Fn wfn 6551  cfv 6556  UnifOncust 24198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-br 5156  df-opab 5218  df-mpt 5239  df-id 5582  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-iota 6508  df-fun 6558  df-fn 6559  df-fv 6564  df-ust 24199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator