MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustbas Structured version   Visualization version   GIF version

Theorem ustbas 24140
Description: Recover the base of an uniform structure 𝑈. ran UnifOn is to UnifOn what Top is to TopOn. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Hypothesis
Ref Expression
ustbas.1 𝑋 = dom 𝑈
Assertion
Ref Expression
ustbas (𝑈 ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋))

Proof of Theorem ustbas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ustfn 24115 . . . 4 UnifOn Fn V
2 fnfun 6581 . . . 4 (UnifOn Fn V → Fun UnifOn)
3 elunirn 7185 . . . 4 (Fun UnifOn → (𝑈 ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)))
41, 2, 3mp2b 10 . . 3 (𝑈 ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))
5 ustbas2 24138 . . . . . . . 8 (𝑈 ∈ (UnifOn‘𝑥) → 𝑥 = dom 𝑈)
6 ustbas.1 . . . . . . . 8 𝑋 = dom 𝑈
75, 6eqtr4di 2784 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑥) → 𝑥 = 𝑋)
87fveq2d 6826 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑥) → (UnifOn‘𝑥) = (UnifOn‘𝑋))
98eleq2d 2817 . . . . 5 (𝑈 ∈ (UnifOn‘𝑥) → (𝑈 ∈ (UnifOn‘𝑥) ↔ 𝑈 ∈ (UnifOn‘𝑋)))
109ibi 267 . . . 4 (𝑈 ∈ (UnifOn‘𝑥) → 𝑈 ∈ (UnifOn‘𝑋))
1110rexlimivw 3129 . . 3 (∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥) → 𝑈 ∈ (UnifOn‘𝑋))
124, 11sylbi 217 . 2 (𝑈 ran UnifOn → 𝑈 ∈ (UnifOn‘𝑋))
13 elfvunirn 6852 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
1412, 13impbii 209 1 (𝑈 ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436   cuni 4859  dom cdm 5616  ran crn 5617  Fun wfun 6475   Fn wfn 6476  cfv 6481  UnifOncust 24113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ust 24114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator