![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustbas | Structured version Visualization version GIF version |
Description: Recover the base of an uniform structure 𝑈. ∪ ran UnifOn is to UnifOn what Top is to TopOn. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
Ref | Expression |
---|---|
ustbas.1 | ⊢ 𝑋 = dom ∪ 𝑈 |
Ref | Expression |
---|---|
ustbas | ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustfn 24200 | . . . 4 ⊢ UnifOn Fn V | |
2 | fnfun 6662 | . . . 4 ⊢ (UnifOn Fn V → Fun UnifOn) | |
3 | elunirn 7268 | . . . 4 ⊢ (Fun UnifOn → (𝑈 ∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)) |
5 | ustbas2 24224 | . . . . . . . 8 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → 𝑥 = dom ∪ 𝑈) | |
6 | ustbas.1 | . . . . . . . 8 ⊢ 𝑋 = dom ∪ 𝑈 | |
7 | 5, 6 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → 𝑥 = 𝑋) |
8 | 7 | fveq2d 6907 | . . . . . 6 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → (UnifOn‘𝑥) = (UnifOn‘𝑋)) |
9 | 8 | eleq2d 2812 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → (𝑈 ∈ (UnifOn‘𝑥) ↔ 𝑈 ∈ (UnifOn‘𝑋))) |
10 | 9 | ibi 266 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → 𝑈 ∈ (UnifOn‘𝑋)) |
11 | 10 | rexlimivw 3141 | . . 3 ⊢ (∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥) → 𝑈 ∈ (UnifOn‘𝑋)) |
12 | 4, 11 | sylbi 216 | . 2 ⊢ (𝑈 ∈ ∪ ran UnifOn → 𝑈 ∈ (UnifOn‘𝑋)) |
13 | elfvunirn 6935 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) | |
14 | 12, 13 | impbii 208 | 1 ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 Vcvv 3462 ∪ cuni 4915 dom cdm 5684 ran crn 5685 Fun wfun 6550 Fn wfn 6551 ‘cfv 6556 UnifOncust 24198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-br 5156 df-opab 5218 df-mpt 5239 df-id 5582 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-iota 6508 df-fun 6558 df-fn 6559 df-fv 6564 df-ust 24199 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |