![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustbas | Structured version Visualization version GIF version |
Description: Recover the base of an uniform structure π. βͺ ran UnifOn is to UnifOn what Top is to TopOn. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
Ref | Expression |
---|---|
ustbas.1 | β’ π = dom βͺ π |
Ref | Expression |
---|---|
ustbas | β’ (π β βͺ ran UnifOn β π β (UnifOnβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustfn 23706 | . . . 4 β’ UnifOn Fn V | |
2 | fnfun 6650 | . . . 4 β’ (UnifOn Fn V β Fun UnifOn) | |
3 | elunirn 7250 | . . . 4 β’ (Fun UnifOn β (π β βͺ ran UnifOn β βπ₯ β dom UnifOnπ β (UnifOnβπ₯))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 β’ (π β βͺ ran UnifOn β βπ₯ β dom UnifOnπ β (UnifOnβπ₯)) |
5 | ustbas2 23730 | . . . . . . . 8 β’ (π β (UnifOnβπ₯) β π₯ = dom βͺ π) | |
6 | ustbas.1 | . . . . . . . 8 β’ π = dom βͺ π | |
7 | 5, 6 | eqtr4di 2791 | . . . . . . 7 β’ (π β (UnifOnβπ₯) β π₯ = π) |
8 | 7 | fveq2d 6896 | . . . . . 6 β’ (π β (UnifOnβπ₯) β (UnifOnβπ₯) = (UnifOnβπ)) |
9 | 8 | eleq2d 2820 | . . . . 5 β’ (π β (UnifOnβπ₯) β (π β (UnifOnβπ₯) β π β (UnifOnβπ))) |
10 | 9 | ibi 267 | . . . 4 β’ (π β (UnifOnβπ₯) β π β (UnifOnβπ)) |
11 | 10 | rexlimivw 3152 | . . 3 β’ (βπ₯ β dom UnifOnπ β (UnifOnβπ₯) β π β (UnifOnβπ)) |
12 | 4, 11 | sylbi 216 | . 2 β’ (π β βͺ ran UnifOn β π β (UnifOnβπ)) |
13 | elfvunirn 6924 | . 2 β’ (π β (UnifOnβπ) β π β βͺ ran UnifOn) | |
14 | 12, 13 | impbii 208 | 1 β’ (π β βͺ ran UnifOn β π β (UnifOnβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1542 β wcel 2107 βwrex 3071 Vcvv 3475 βͺ cuni 4909 dom cdm 5677 ran crn 5678 Fun wfun 6538 Fn wfn 6539 βcfv 6544 UnifOncust 23704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 df-ust 23705 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |