| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustbas | Structured version Visualization version GIF version | ||
| Description: Recover the base of an uniform structure 𝑈. ∪ ran UnifOn is to UnifOn what Top is to TopOn. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
| Ref | Expression |
|---|---|
| ustbas.1 | ⊢ 𝑋 = dom ∪ 𝑈 |
| Ref | Expression |
|---|---|
| ustbas | ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustfn 24145 | . . . 4 ⊢ UnifOn Fn V | |
| 2 | fnfun 6643 | . . . 4 ⊢ (UnifOn Fn V → Fun UnifOn) | |
| 3 | elunirn 7248 | . . . 4 ⊢ (Fun UnifOn → (𝑈 ∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))) | |
| 4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)) |
| 5 | ustbas2 24169 | . . . . . . . 8 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → 𝑥 = dom ∪ 𝑈) | |
| 6 | ustbas.1 | . . . . . . . 8 ⊢ 𝑋 = dom ∪ 𝑈 | |
| 7 | 5, 6 | eqtr4di 2789 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → 𝑥 = 𝑋) |
| 8 | 7 | fveq2d 6885 | . . . . . 6 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → (UnifOn‘𝑥) = (UnifOn‘𝑋)) |
| 9 | 8 | eleq2d 2821 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → (𝑈 ∈ (UnifOn‘𝑥) ↔ 𝑈 ∈ (UnifOn‘𝑋))) |
| 10 | 9 | ibi 267 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 11 | 10 | rexlimivw 3138 | . . 3 ⊢ (∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 12 | 4, 11 | sylbi 217 | . 2 ⊢ (𝑈 ∈ ∪ ran UnifOn → 𝑈 ∈ (UnifOn‘𝑋)) |
| 13 | elfvunirn 6913 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) | |
| 14 | 12, 13 | impbii 209 | 1 ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 Vcvv 3464 ∪ cuni 4888 dom cdm 5659 ran crn 5660 Fun wfun 6530 Fn wfn 6531 ‘cfv 6536 UnifOncust 24143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-ust 24144 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |