| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustbas | Structured version Visualization version GIF version | ||
| Description: Recover the base of an uniform structure 𝑈. ∪ ran UnifOn is to UnifOn what Top is to TopOn. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
| Ref | Expression |
|---|---|
| ustbas.1 | ⊢ 𝑋 = dom ∪ 𝑈 |
| Ref | Expression |
|---|---|
| ustbas | ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustfn 24118 | . . . 4 ⊢ UnifOn Fn V | |
| 2 | fnfun 6586 | . . . 4 ⊢ (UnifOn Fn V → Fun UnifOn) | |
| 3 | elunirn 7191 | . . . 4 ⊢ (Fun UnifOn → (𝑈 ∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))) | |
| 4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)) |
| 5 | ustbas2 24141 | . . . . . . . 8 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → 𝑥 = dom ∪ 𝑈) | |
| 6 | ustbas.1 | . . . . . . . 8 ⊢ 𝑋 = dom ∪ 𝑈 | |
| 7 | 5, 6 | eqtr4di 2786 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → 𝑥 = 𝑋) |
| 8 | 7 | fveq2d 6832 | . . . . . 6 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → (UnifOn‘𝑥) = (UnifOn‘𝑋)) |
| 9 | 8 | eleq2d 2819 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → (𝑈 ∈ (UnifOn‘𝑥) ↔ 𝑈 ∈ (UnifOn‘𝑋))) |
| 10 | 9 | ibi 267 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑥) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 11 | 10 | rexlimivw 3130 | . . 3 ⊢ (∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 12 | 4, 11 | sylbi 217 | . 2 ⊢ (𝑈 ∈ ∪ ran UnifOn → 𝑈 ∈ (UnifOn‘𝑋)) |
| 13 | elfvunirn 6858 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) | |
| 14 | 12, 13 | impbii 209 | 1 ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 ∪ cuni 4858 dom cdm 5619 ran crn 5620 Fun wfun 6480 Fn wfn 6481 ‘cfv 6486 UnifOncust 24116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-ust 24117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |