MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopval Structured version   Visualization version   GIF version

Theorem utopval 24136
Description: The topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 30-Nov-2017.)
Assertion
Ref Expression
utopval (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
Distinct variable groups:   𝑣,𝑎,𝑥,𝑈   𝑋,𝑎,𝑥
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem utopval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 df-utop 24135 . 2 unifTop = (𝑢 ran UnifOn ↦ {𝑎 ∈ 𝒫 dom 𝑢 ∣ ∀𝑥𝑎𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎})
2 simpr 484 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈)
32unieqd 4874 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈)
43dmeqd 5852 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom 𝑢 = dom 𝑈)
5 ustbas2 24129 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
65adantr 480 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑋 = dom 𝑈)
74, 6eqtr4d 2767 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom 𝑢 = 𝑋)
87pweqd 4570 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝒫 dom 𝑢 = 𝒫 𝑋)
92rexeqdv 3291 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (∃𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎))
109ralbidv 3152 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (∀𝑥𝑎𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎))
118, 10rabeqbidv 3415 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → {𝑎 ∈ 𝒫 dom 𝑢 ∣ ∀𝑥𝑎𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
12 elfvunirn 6856 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
13 elfvex 6862 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
14 pwexg 5320 . . 3 (𝑋 ∈ V → 𝒫 𝑋 ∈ V)
15 rabexg 5279 . . 3 (𝒫 𝑋 ∈ V → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ∈ V)
1613, 14, 153syl 18 . 2 (𝑈 ∈ (UnifOn‘𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ∈ V)
171, 11, 12, 16fvmptd2 6942 1 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  wss 3905  𝒫 cpw 4553  {csn 4579   cuni 4861  dom cdm 5623  ran crn 5624  cima 5626  cfv 6486  UnifOncust 24103  unifTopcutop 24134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-iota 6442  df-fun 6488  df-fv 6494  df-ust 24104  df-utop 24135
This theorem is referenced by:  elutop  24137  utoptop  24138  utopbas  24139  utopsnneiplem  24151  psmetutop  24471
  Copyright terms: Public domain W3C validator