| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > utopval | Structured version Visualization version GIF version | ||
| Description: The topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 30-Nov-2017.) |
| Ref | Expression |
|---|---|
| utopval | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-utop 24240 | . 2 ⊢ unifTop = (𝑢 ∈ ∪ ran UnifOn ↦ {𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎}) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈) | |
| 3 | 2 | unieqd 4920 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ∪ 𝑢 = ∪ 𝑈) |
| 4 | 3 | dmeqd 5916 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom ∪ 𝑢 = dom ∪ 𝑈) |
| 5 | ustbas2 24234 | . . . . . 6 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑋 = dom ∪ 𝑈) |
| 7 | 4, 6 | eqtr4d 2780 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom ∪ 𝑢 = 𝑋) |
| 8 | 7 | pweqd 4617 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝒫 dom ∪ 𝑢 = 𝒫 𝑋) |
| 9 | 2 | rexeqdv 3327 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎)) |
| 10 | 9 | ralbidv 3178 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎)) |
| 11 | 8, 10 | rabeqbidv 3455 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → {𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) |
| 12 | elfvunirn 6938 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) | |
| 13 | elfvex 6944 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
| 14 | pwexg 5378 | . . 3 ⊢ (𝑋 ∈ V → 𝒫 𝑋 ∈ V) | |
| 15 | rabexg 5337 | . . 3 ⊢ (𝒫 𝑋 ∈ V → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ∈ V) | |
| 16 | 13, 14, 15 | 3syl 18 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ∈ V) |
| 17 | 1, 11, 12, 16 | fvmptd2 7024 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 {crab 3436 Vcvv 3480 ⊆ wss 3951 𝒫 cpw 4600 {csn 4626 ∪ cuni 4907 dom cdm 5685 ran crn 5686 “ cima 5688 ‘cfv 6561 UnifOncust 24208 unifTopcutop 24239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-iota 6514 df-fun 6563 df-fv 6569 df-ust 24209 df-utop 24240 |
| This theorem is referenced by: elutop 24242 utoptop 24243 utopbas 24244 utopsnneiplem 24256 psmetutop 24580 |
| Copyright terms: Public domain | W3C validator |