MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopval Structured version   Visualization version   GIF version

Theorem utopval 22528
Description: The topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 30-Nov-2017.)
Assertion
Ref Expression
utopval (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
Distinct variable groups:   𝑣,𝑎,𝑥,𝑈   𝑋,𝑎,𝑥
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem utopval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 df-utop 22527 . 2 unifTop = (𝑢 ran UnifOn ↦ {𝑎 ∈ 𝒫 dom 𝑢 ∣ ∀𝑥𝑎𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎})
2 simpr 485 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈)
32unieqd 4761 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈)
43dmeqd 5667 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom 𝑢 = dom 𝑈)
5 ustbas2 22521 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
65adantr 481 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑋 = dom 𝑈)
74, 6eqtr4d 2836 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom 𝑢 = 𝑋)
87pweqd 4464 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝒫 dom 𝑢 = 𝒫 𝑋)
92rexeqdv 3378 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (∃𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎))
109ralbidv 3166 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (∀𝑥𝑎𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎))
118, 10rabeqbidv 3433 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → {𝑎 ∈ 𝒫 dom 𝑢 ∣ ∀𝑥𝑎𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
12 elrnust 22520 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
13 elfvex 6578 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
14 pwexg 5177 . . 3 (𝑋 ∈ V → 𝒫 𝑋 ∈ V)
15 rabexg 5132 . . 3 (𝒫 𝑋 ∈ V → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ∈ V)
1613, 14, 153syl 18 . 2 (𝑈 ∈ (UnifOn‘𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ∈ V)
171, 11, 12, 16fvmptd2 6649 1 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083  wral 3107  wrex 3108  {crab 3111  Vcvv 3440  wss 3865  𝒫 cpw 4459  {csn 4478   cuni 4751  dom cdm 5450  ran crn 5451  cima 5453  cfv 6232  UnifOncust 22495  unifTopcutop 22526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-iota 6196  df-fun 6234  df-fn 6235  df-fv 6240  df-ust 22496  df-utop 22527
This theorem is referenced by:  elutop  22529  utoptop  22530  utopbas  22531  utopsnneiplem  22543  psmetutop  22864
  Copyright terms: Public domain W3C validator