![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > utopval | Structured version Visualization version GIF version |
Description: The topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 30-Nov-2017.) |
Ref | Expression |
---|---|
utopval | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-utop 24261 | . 2 ⊢ unifTop = (𝑢 ∈ ∪ ran UnifOn ↦ {𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎}) | |
2 | simpr 484 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈) | |
3 | 2 | unieqd 4944 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ∪ 𝑢 = ∪ 𝑈) |
4 | 3 | dmeqd 5930 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom ∪ 𝑢 = dom ∪ 𝑈) |
5 | ustbas2 24255 | . . . . . 6 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑋 = dom ∪ 𝑈) |
7 | 4, 6 | eqtr4d 2783 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom ∪ 𝑢 = 𝑋) |
8 | 7 | pweqd 4639 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝒫 dom ∪ 𝑢 = 𝒫 𝑋) |
9 | 2 | rexeqdv 3335 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎)) |
10 | 9 | ralbidv 3184 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎)) |
11 | 8, 10 | rabeqbidv 3462 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → {𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) |
12 | elfvunirn 6952 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) | |
13 | elfvex 6958 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
14 | pwexg 5396 | . . 3 ⊢ (𝑋 ∈ V → 𝒫 𝑋 ∈ V) | |
15 | rabexg 5355 | . . 3 ⊢ (𝒫 𝑋 ∈ V → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ∈ V) | |
16 | 13, 14, 15 | 3syl 18 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ∈ V) |
17 | 1, 11, 12, 16 | fvmptd2 7037 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {crab 3443 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 {csn 4648 ∪ cuni 4931 dom cdm 5700 ran crn 5701 “ cima 5703 ‘cfv 6573 UnifOncust 24229 unifTopcutop 24260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-ust 24230 df-utop 24261 |
This theorem is referenced by: elutop 24263 utoptop 24264 utopbas 24265 utopsnneiplem 24277 psmetutop 24601 |
Copyright terms: Public domain | W3C validator |