| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > utopval | Structured version Visualization version GIF version | ||
| Description: The topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 30-Nov-2017.) |
| Ref | Expression |
|---|---|
| utopval | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-utop 24149 | . 2 ⊢ unifTop = (𝑢 ∈ ∪ ran UnifOn ↦ {𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎}) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈) | |
| 3 | 2 | unieqd 4873 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ∪ 𝑢 = ∪ 𝑈) |
| 4 | 3 | dmeqd 5851 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom ∪ 𝑢 = dom ∪ 𝑈) |
| 5 | ustbas2 24143 | . . . . . 6 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑋 = dom ∪ 𝑈) |
| 7 | 4, 6 | eqtr4d 2771 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom ∪ 𝑢 = 𝑋) |
| 8 | 7 | pweqd 4568 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝒫 dom ∪ 𝑢 = 𝒫 𝑋) |
| 9 | 2 | rexeqdv 3294 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎)) |
| 10 | 9 | ralbidv 3156 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎)) |
| 11 | 8, 10 | rabeqbidv 3414 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → {𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) |
| 12 | elfvunirn 6860 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) | |
| 13 | elfvex 6865 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
| 14 | pwexg 5320 | . . 3 ⊢ (𝑋 ∈ V → 𝒫 𝑋 ∈ V) | |
| 15 | rabexg 5279 | . . 3 ⊢ (𝒫 𝑋 ∈ V → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ∈ V) | |
| 16 | 13, 14, 15 | 3syl 18 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ∈ V) |
| 17 | 1, 11, 12, 16 | fvmptd2 6945 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 {crab 3396 Vcvv 3437 ⊆ wss 3898 𝒫 cpw 4551 {csn 4577 ∪ cuni 4860 dom cdm 5621 ran crn 5622 “ cima 5624 ‘cfv 6488 UnifOncust 24118 unifTopcutop 24148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-iota 6444 df-fun 6490 df-fv 6496 df-ust 24119 df-utop 24149 |
| This theorem is referenced by: elutop 24151 utoptop 24152 utopbas 24153 utopsnneiplem 24165 psmetutop 24485 |
| Copyright terms: Public domain | W3C validator |