MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopval Structured version   Visualization version   GIF version

Theorem utopval 23292
Description: The topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 30-Nov-2017.)
Assertion
Ref Expression
utopval (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
Distinct variable groups:   𝑣,𝑎,𝑥,𝑈   𝑋,𝑎,𝑥
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem utopval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 df-utop 23291 . 2 unifTop = (𝑢 ran UnifOn ↦ {𝑎 ∈ 𝒫 dom 𝑢 ∣ ∀𝑥𝑎𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎})
2 simpr 484 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈)
32unieqd 4850 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈)
43dmeqd 5803 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom 𝑢 = dom 𝑈)
5 ustbas2 23285 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
65adantr 480 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑋 = dom 𝑈)
74, 6eqtr4d 2781 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom 𝑢 = 𝑋)
87pweqd 4549 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝒫 dom 𝑢 = 𝒫 𝑋)
92rexeqdv 3340 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (∃𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎))
109ralbidv 3120 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (∀𝑥𝑎𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎))
118, 10rabeqbidv 3410 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → {𝑎 ∈ 𝒫 dom 𝑢 ∣ ∀𝑥𝑎𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
12 elrnust 23284 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
13 elfvex 6789 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
14 pwexg 5296 . . 3 (𝑋 ∈ V → 𝒫 𝑋 ∈ V)
15 rabexg 5250 . . 3 (𝒫 𝑋 ∈ V → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ∈ V)
1613, 14, 153syl 18 . 2 (𝑈 ∈ (UnifOn‘𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ∈ V)
171, 11, 12, 16fvmptd2 6865 1 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  𝒫 cpw 4530  {csn 4558   cuni 4836  dom cdm 5580  ran crn 5581  cima 5583  cfv 6418  UnifOncust 23259  unifTopcutop 23290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-ust 23260  df-utop 23291
This theorem is referenced by:  elutop  23293  utoptop  23294  utopbas  23295  utopsnneiplem  23307  psmetutop  23629
  Copyright terms: Public domain W3C validator