| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measbasedom | Structured version Visualization version GIF version | ||
| Description: The base set of a measure is its domain. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| measbasedom | ⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrnmeas 34205 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → (dom 𝑀 ∈ ∪ ran sigAlgebra ∧ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) | |
| 2 | 1 | simprd 495 | . . 3 ⊢ (𝑀 ∈ ∪ ran measures → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) |
| 3 | dmmeas 34206 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra) | |
| 4 | ismeas 34204 | . . . 4 ⊢ (dom 𝑀 ∈ ∪ ran sigAlgebra → (𝑀 ∈ (measures‘dom 𝑀) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑀 ∈ ∪ ran measures → (𝑀 ∈ (measures‘dom 𝑀) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) |
| 6 | 2, 5 | mpbird 257 | . 2 ⊢ (𝑀 ∈ ∪ ran measures → 𝑀 ∈ (measures‘dom 𝑀)) |
| 7 | elfvunirn 6847 | . 2 ⊢ (𝑀 ∈ (measures‘dom 𝑀) → 𝑀 ∈ ∪ ran measures) | |
| 8 | 6, 7 | impbii 209 | 1 ⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∅c0 4278 𝒫 cpw 4545 ∪ cuni 4854 Disj wdisj 5053 class class class wbr 5086 dom cdm 5611 ran crn 5612 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ωcom 7791 ≼ cdom 8862 0cc0 11001 +∞cpnf 11138 [,]cicc 13243 Σ*cesum 34032 sigAlgebracsiga 34113 measurescmeas 34200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-esum 34033 df-meas 34201 |
| This theorem is referenced by: truae 34248 aean 34249 sibfinima 34344 sibfof 34345 domprobmeas 34415 probmeasd 34428 probfinmeasb 34433 probfinmeasbALTV 34434 probmeasb 34435 dstrvprob 34477 |
| Copyright terms: Public domain | W3C validator |