Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measbasedom Structured version   Visualization version   GIF version

Theorem measbasedom 34192
Description: The base set of a measure is its domain. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
measbasedom (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))

Proof of Theorem measbasedom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnmeas 34190 . . . 4 (𝑀 ran measures → (dom 𝑀 ran sigAlgebra ∧ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
21simprd 495 . . 3 (𝑀 ran measures → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
3 dmmeas 34191 . . . 4 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
4 ismeas 34189 . . . 4 (dom 𝑀 ran sigAlgebra → (𝑀 ∈ (measures‘dom 𝑀) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
53, 4syl 17 . . 3 (𝑀 ran measures → (𝑀 ∈ (measures‘dom 𝑀) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
62, 5mpbird 257 . 2 (𝑀 ran measures → 𝑀 ∈ (measures‘dom 𝑀))
7 elfvunirn 6890 . 2 (𝑀 ∈ (measures‘dom 𝑀) → 𝑀 ran measures)
86, 7impbii 209 1 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  c0 4296  𝒫 cpw 4563   cuni 4871  Disj wdisj 5074   class class class wbr 5107  dom cdm 5638  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  ωcom 7842  cdom 8916  0cc0 11068  +∞cpnf 11205  [,]cicc 13309  Σ*cesum 34017  sigAlgebracsiga 34098  measurescmeas 34185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-esum 34018  df-meas 34186
This theorem is referenced by:  truae  34233  aean  34234  sibfinima  34330  sibfof  34331  domprobmeas  34401  probmeasd  34414  probfinmeasb  34419  probfinmeasbALTV  34420  probmeasb  34421  dstrvprob  34463
  Copyright terms: Public domain W3C validator