| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measbasedom | Structured version Visualization version GIF version | ||
| Description: The base set of a measure is its domain. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| measbasedom | ⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrnmeas 34285 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → (dom 𝑀 ∈ ∪ ran sigAlgebra ∧ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) | |
| 2 | 1 | simprd 495 | . . 3 ⊢ (𝑀 ∈ ∪ ran measures → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) |
| 3 | dmmeas 34286 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra) | |
| 4 | ismeas 34284 | . . . 4 ⊢ (dom 𝑀 ∈ ∪ ran sigAlgebra → (𝑀 ∈ (measures‘dom 𝑀) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑀 ∈ ∪ ran measures → (𝑀 ∈ (measures‘dom 𝑀) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) |
| 6 | 2, 5 | mpbird 257 | . 2 ⊢ (𝑀 ∈ ∪ ran measures → 𝑀 ∈ (measures‘dom 𝑀)) |
| 7 | elfvunirn 6861 | . 2 ⊢ (𝑀 ∈ (measures‘dom 𝑀) → 𝑀 ∈ ∪ ran measures) | |
| 8 | 6, 7 | impbii 209 | 1 ⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∅c0 4282 𝒫 cpw 4551 ∪ cuni 4860 Disj wdisj 5062 class class class wbr 5095 dom cdm 5621 ran crn 5622 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ωcom 7805 ≼ cdom 8877 0cc0 11017 +∞cpnf 11154 [,]cicc 13255 Σ*cesum 34112 sigAlgebracsiga 34193 measurescmeas 34280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-esum 34113 df-meas 34281 |
| This theorem is referenced by: truae 34328 aean 34329 sibfinima 34424 sibfof 34425 domprobmeas 34495 probmeasd 34508 probfinmeasb 34513 probfinmeasbALTV 34514 probmeasb 34515 dstrvprob 34557 |
| Copyright terms: Public domain | W3C validator |