| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measbasedom | Structured version Visualization version GIF version | ||
| Description: The base set of a measure is its domain. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| measbasedom | ⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrnmeas 34190 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → (dom 𝑀 ∈ ∪ ran sigAlgebra ∧ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) | |
| 2 | 1 | simprd 495 | . . 3 ⊢ (𝑀 ∈ ∪ ran measures → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)))) |
| 3 | dmmeas 34191 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra) | |
| 4 | ismeas 34189 | . . . 4 ⊢ (dom 𝑀 ∈ ∪ ran sigAlgebra → (𝑀 ∈ (measures‘dom 𝑀) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑀 ∈ ∪ ran measures → (𝑀 ∈ (measures‘dom 𝑀) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦))))) |
| 6 | 2, 5 | mpbird 257 | . 2 ⊢ (𝑀 ∈ ∪ ran measures → 𝑀 ∈ (measures‘dom 𝑀)) |
| 7 | elfvunirn 6890 | . 2 ⊢ (𝑀 ∈ (measures‘dom 𝑀) → 𝑀 ∈ ∪ ran measures) | |
| 8 | 6, 7 | impbii 209 | 1 ⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∅c0 4296 𝒫 cpw 4563 ∪ cuni 4871 Disj wdisj 5074 class class class wbr 5107 dom cdm 5638 ran crn 5639 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ωcom 7842 ≼ cdom 8916 0cc0 11068 +∞cpnf 11205 [,]cicc 13309 Σ*cesum 34017 sigAlgebracsiga 34098 measurescmeas 34185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-esum 34018 df-meas 34186 |
| This theorem is referenced by: truae 34233 aean 34234 sibfinima 34330 sibfof 34331 domprobmeas 34401 probmeasd 34414 probfinmeasb 34419 probfinmeasbALTV 34420 probmeasb 34421 dstrvprob 34463 |
| Copyright terms: Public domain | W3C validator |