![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measbasedom | Structured version Visualization version GIF version |
Description: The base set of a measure is its domain. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
Ref | Expression |
---|---|
measbasedom | β’ (π β βͺ ran measures β π β (measuresβdom π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrnmeas 33186 | . . . 4 β’ (π β βͺ ran measures β (dom π β βͺ ran sigAlgebra β§ (π:dom πβΆ(0[,]+β) β§ (πββ ) = 0 β§ βπ₯ β π« dom π((π₯ βΌ Ο β§ Disj π¦ β π₯ π¦) β (πββͺ π₯) = Ξ£*π¦ β π₯(πβπ¦))))) | |
2 | 1 | simprd 496 | . . 3 β’ (π β βͺ ran measures β (π:dom πβΆ(0[,]+β) β§ (πββ ) = 0 β§ βπ₯ β π« dom π((π₯ βΌ Ο β§ Disj π¦ β π₯ π¦) β (πββͺ π₯) = Ξ£*π¦ β π₯(πβπ¦)))) |
3 | dmmeas 33187 | . . . 4 β’ (π β βͺ ran measures β dom π β βͺ ran sigAlgebra) | |
4 | ismeas 33185 | . . . 4 β’ (dom π β βͺ ran sigAlgebra β (π β (measuresβdom π) β (π:dom πβΆ(0[,]+β) β§ (πββ ) = 0 β§ βπ₯ β π« dom π((π₯ βΌ Ο β§ Disj π¦ β π₯ π¦) β (πββͺ π₯) = Ξ£*π¦ β π₯(πβπ¦))))) | |
5 | 3, 4 | syl 17 | . . 3 β’ (π β βͺ ran measures β (π β (measuresβdom π) β (π:dom πβΆ(0[,]+β) β§ (πββ ) = 0 β§ βπ₯ β π« dom π((π₯ βΌ Ο β§ Disj π¦ β π₯ π¦) β (πββͺ π₯) = Ξ£*π¦ β π₯(πβπ¦))))) |
6 | 2, 5 | mpbird 256 | . 2 β’ (π β βͺ ran measures β π β (measuresβdom π)) |
7 | elfvunirn 6920 | . 2 β’ (π β (measuresβdom π) β π β βͺ ran measures) | |
8 | 6, 7 | impbii 208 | 1 β’ (π β βͺ ran measures β π β (measuresβdom π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 β c0 4321 π« cpw 4601 βͺ cuni 4907 Disj wdisj 5112 class class class wbr 5147 dom cdm 5675 ran crn 5676 βΆwf 6536 βcfv 6540 (class class class)co 7405 Οcom 7851 βΌ cdom 8933 0cc0 11106 +βcpnf 11241 [,]cicc 13323 Ξ£*cesum 33013 sigAlgebracsiga 33094 measurescmeas 33181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-esum 33014 df-meas 33182 |
This theorem is referenced by: truae 33229 aean 33230 sibfinima 33326 sibfof 33327 domprobmeas 33397 probmeasd 33410 probfinmeasb 33415 probfinmeasbALTV 33416 probmeasb 33417 dstrvprob 33458 |
Copyright terms: Public domain | W3C validator |