![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measbasedom | Structured version Visualization version GIF version |
Description: The base set of a measure is its domain. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
Ref | Expression |
---|---|
measbasedom | β’ (π β βͺ ran measures β π β (measuresβdom π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrnmeas 33875 | . . . 4 β’ (π β βͺ ran measures β (dom π β βͺ ran sigAlgebra β§ (π:dom πβΆ(0[,]+β) β§ (πββ ) = 0 β§ βπ₯ β π« dom π((π₯ βΌ Ο β§ Disj π¦ β π₯ π¦) β (πββͺ π₯) = Ξ£*π¦ β π₯(πβπ¦))))) | |
2 | 1 | simprd 494 | . . 3 β’ (π β βͺ ran measures β (π:dom πβΆ(0[,]+β) β§ (πββ ) = 0 β§ βπ₯ β π« dom π((π₯ βΌ Ο β§ Disj π¦ β π₯ π¦) β (πββͺ π₯) = Ξ£*π¦ β π₯(πβπ¦)))) |
3 | dmmeas 33876 | . . . 4 β’ (π β βͺ ran measures β dom π β βͺ ran sigAlgebra) | |
4 | ismeas 33874 | . . . 4 β’ (dom π β βͺ ran sigAlgebra β (π β (measuresβdom π) β (π:dom πβΆ(0[,]+β) β§ (πββ ) = 0 β§ βπ₯ β π« dom π((π₯ βΌ Ο β§ Disj π¦ β π₯ π¦) β (πββͺ π₯) = Ξ£*π¦ β π₯(πβπ¦))))) | |
5 | 3, 4 | syl 17 | . . 3 β’ (π β βͺ ran measures β (π β (measuresβdom π) β (π:dom πβΆ(0[,]+β) β§ (πββ ) = 0 β§ βπ₯ β π« dom π((π₯ βΌ Ο β§ Disj π¦ β π₯ π¦) β (πββͺ π₯) = Ξ£*π¦ β π₯(πβπ¦))))) |
6 | 2, 5 | mpbird 256 | . 2 β’ (π β βͺ ran measures β π β (measuresβdom π)) |
7 | elfvunirn 6923 | . 2 β’ (π β (measuresβdom π) β π β βͺ ran measures) | |
8 | 6, 7 | impbii 208 | 1 β’ (π β βͺ ran measures β π β (measuresβdom π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3051 β c0 4318 π« cpw 4598 βͺ cuni 4903 Disj wdisj 5108 class class class wbr 5143 dom cdm 5672 ran crn 5673 βΆwf 6538 βcfv 6542 (class class class)co 7415 Οcom 7867 βΌ cdom 8958 0cc0 11136 +βcpnf 11273 [,]cicc 13357 Ξ£*cesum 33702 sigAlgebracsiga 33783 measurescmeas 33870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7418 df-esum 33703 df-meas 33871 |
This theorem is referenced by: truae 33918 aean 33919 sibfinima 34015 sibfof 34016 domprobmeas 34086 probmeasd 34099 probfinmeasb 34104 probfinmeasbALTV 34105 probmeasb 34106 dstrvprob 34147 |
Copyright terms: Public domain | W3C validator |