Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measbasedom Structured version   Visualization version   GIF version

Theorem measbasedom 34238
Description: The base set of a measure is its domain. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
measbasedom (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))

Proof of Theorem measbasedom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnmeas 34236 . . . 4 (𝑀 ran measures → (dom 𝑀 ran sigAlgebra ∧ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
21simprd 495 . . 3 (𝑀 ran measures → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
3 dmmeas 34237 . . . 4 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
4 ismeas 34235 . . . 4 (dom 𝑀 ran sigAlgebra → (𝑀 ∈ (measures‘dom 𝑀) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
53, 4syl 17 . . 3 (𝑀 ran measures → (𝑀 ∈ (measures‘dom 𝑀) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
62, 5mpbird 257 . 2 (𝑀 ran measures → 𝑀 ∈ (measures‘dom 𝑀))
7 elfvunirn 6913 . 2 (𝑀 ∈ (measures‘dom 𝑀) → 𝑀 ran measures)
86, 7impbii 209 1 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  c0 4313  𝒫 cpw 4580   cuni 4888  Disj wdisj 5091   class class class wbr 5124  dom cdm 5659  ran crn 5660  wf 6532  cfv 6536  (class class class)co 7410  ωcom 7866  cdom 8962  0cc0 11134  +∞cpnf 11271  [,]cicc 13370  Σ*cesum 34063  sigAlgebracsiga 34144  measurescmeas 34231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-esum 34064  df-meas 34232
This theorem is referenced by:  truae  34279  aean  34280  sibfinima  34376  sibfof  34377  domprobmeas  34447  probmeasd  34460  probfinmeasb  34465  probfinmeasbALTV  34466  probmeasb  34467  dstrvprob  34509
  Copyright terms: Public domain W3C validator