Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measbasedom Structured version   Visualization version   GIF version

Theorem measbasedom 32070
Description: The base set of a measure is its domain. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
measbasedom (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))

Proof of Theorem measbasedom
Dummy variables 𝑥 𝑦 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnmeas 32068 . . . 4 (𝑀 ran measures → (dom 𝑀 ran sigAlgebra ∧ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
21simprd 495 . . 3 (𝑀 ran measures → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))))
3 dmmeas 32069 . . . 4 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
4 ismeas 32067 . . . 4 (dom 𝑀 ran sigAlgebra → (𝑀 ∈ (measures‘dom 𝑀) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
53, 4syl 17 . . 3 (𝑀 ran measures → (𝑀 ∈ (measures‘dom 𝑀) ↔ (𝑀:dom 𝑀⟶(0[,]+∞) ∧ (𝑀‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦)))))
62, 5mpbird 256 . 2 (𝑀 ran measures → 𝑀 ∈ (measures‘dom 𝑀))
7 df-meas 32064 . . . 4 measures = (𝑠 ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
87funmpt2 6457 . . 3 Fun measures
9 elunirn2 30890 . . 3 ((Fun measures ∧ 𝑀 ∈ (measures‘dom 𝑀)) → 𝑀 ran measures)
108, 9mpan 686 . 2 (𝑀 ∈ (measures‘dom 𝑀) → 𝑀 ran measures)
116, 10impbii 208 1 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wral 3063  c0 4253  𝒫 cpw 4530   cuni 4836  Disj wdisj 5035   class class class wbr 5070  dom cdm 5580  ran crn 5581  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  ωcom 7687  cdom 8689  0cc0 10802  +∞cpnf 10937  [,]cicc 13011  Σ*cesum 31895  sigAlgebracsiga 31976  measurescmeas 32063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-esum 31896  df-meas 32064
This theorem is referenced by:  truae  32111  aean  32112  mbfmbfm  32125  sibfinima  32206  sibfof  32207  domprobmeas  32277  probmeasd  32290  probfinmeasb  32295  probfinmeasbALTV  32296  probmeasb  32297  dstrvprob  32338
  Copyright terms: Public domain W3C validator