Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measbasedom Structured version   Visualization version   GIF version

Theorem measbasedom 33877
Description: The base set of a measure is its domain. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
measbasedom (𝑀 ∈ βˆͺ ran measures ↔ 𝑀 ∈ (measuresβ€˜dom 𝑀))

Proof of Theorem measbasedom
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isrnmeas 33875 . . . 4 (𝑀 ∈ βˆͺ ran measures β†’ (dom 𝑀 ∈ βˆͺ ran sigAlgebra ∧ (𝑀:dom π‘€βŸΆ(0[,]+∞) ∧ (π‘€β€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 dom 𝑀((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘€β€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘€β€˜π‘¦)))))
21simprd 494 . . 3 (𝑀 ∈ βˆͺ ran measures β†’ (𝑀:dom π‘€βŸΆ(0[,]+∞) ∧ (π‘€β€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 dom 𝑀((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘€β€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘€β€˜π‘¦))))
3 dmmeas 33876 . . . 4 (𝑀 ∈ βˆͺ ran measures β†’ dom 𝑀 ∈ βˆͺ ran sigAlgebra)
4 ismeas 33874 . . . 4 (dom 𝑀 ∈ βˆͺ ran sigAlgebra β†’ (𝑀 ∈ (measuresβ€˜dom 𝑀) ↔ (𝑀:dom π‘€βŸΆ(0[,]+∞) ∧ (π‘€β€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 dom 𝑀((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘€β€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘€β€˜π‘¦)))))
53, 4syl 17 . . 3 (𝑀 ∈ βˆͺ ran measures β†’ (𝑀 ∈ (measuresβ€˜dom 𝑀) ↔ (𝑀:dom π‘€βŸΆ(0[,]+∞) ∧ (π‘€β€˜βˆ…) = 0 ∧ βˆ€π‘₯ ∈ 𝒫 dom 𝑀((π‘₯ β‰Ό Ο‰ ∧ Disj 𝑦 ∈ π‘₯ 𝑦) β†’ (π‘€β€˜βˆͺ π‘₯) = Ξ£*𝑦 ∈ π‘₯(π‘€β€˜π‘¦)))))
62, 5mpbird 256 . 2 (𝑀 ∈ βˆͺ ran measures β†’ 𝑀 ∈ (measuresβ€˜dom 𝑀))
7 elfvunirn 6923 . 2 (𝑀 ∈ (measuresβ€˜dom 𝑀) β†’ 𝑀 ∈ βˆͺ ran measures)
86, 7impbii 208 1 (𝑀 ∈ βˆͺ ran measures ↔ 𝑀 ∈ (measuresβ€˜dom 𝑀))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051  βˆ…c0 4318  π’« cpw 4598  βˆͺ cuni 4903  Disj wdisj 5108   class class class wbr 5143  dom cdm 5672  ran crn 5673  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7415  Ο‰com 7867   β‰Ό cdom 8958  0cc0 11136  +∞cpnf 11273  [,]cicc 13357  Ξ£*cesum 33702  sigAlgebracsiga 33783  measurescmeas 33870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7418  df-esum 33703  df-meas 33871
This theorem is referenced by:  truae  33918  aean  33919  sibfinima  34015  sibfof  34016  domprobmeas  34086  probmeasd  34099  probfinmeasb  34104  probfinmeasbALTV  34105  probmeasb  34106  dstrvprob  34147
  Copyright terms: Public domain W3C validator