MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omina Structured version   Visualization version   GIF version

Theorem omina 10760
Description: ω is a strongly inaccessible cardinal. (Many definitions of "inaccessible" explicitly disallow ω as an inaccessible cardinal, but this choice allows to reuse our results for inaccessibles for ω.) (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
omina ω ∈ Inacc

Proof of Theorem omina
StepHypRef Expression
1 peano1 7927 . . 3 ∅ ∈ ω
21ne0ii 4367 . 2 ω ≠ ∅
3 cfom 10333 . 2 (cf‘ω) = ω
4 nnfi 9233 . . . . 5 (𝑥 ∈ ω → 𝑥 ∈ Fin)
5 pwfi 9385 . . . . 5 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
64, 5sylib 218 . . . 4 (𝑥 ∈ ω → 𝒫 𝑥 ∈ Fin)
7 isfinite 9721 . . . 4 (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω)
86, 7sylib 218 . . 3 (𝑥 ∈ ω → 𝒫 𝑥 ≺ ω)
98rgen 3069 . 2 𝑥 ∈ ω 𝒫 𝑥 ≺ ω
10 elina 10756 . 2 (ω ∈ Inacc ↔ (ω ≠ ∅ ∧ (cf‘ω) = ω ∧ ∀𝑥 ∈ ω 𝒫 𝑥 ≺ ω))
112, 3, 9, 10mpbir3an 1341 1 ω ∈ Inacc
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wne 2946  wral 3067  c0 4352  𝒫 cpw 4622   class class class wbr 5166  cfv 6573  ωcom 7903  csdm 9002  Fincfn 9003  cfccf 10006  Inacccina 10752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-cf 10010  df-ina 10754
This theorem is referenced by:  r1omALT  10845  r1omtsk  10848
  Copyright terms: Public domain W3C validator