MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omina Structured version   Visualization version   GIF version

Theorem omina 10705
Description: ω is a strongly inaccessible cardinal. (Many definitions of "inaccessible" explicitly disallow ω as an inaccessible cardinal, but this choice allows to reuse our results for inaccessibles for ω.) (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
omina ω ∈ Inacc

Proof of Theorem omina
StepHypRef Expression
1 peano1 7884 . . 3 ∅ ∈ ω
21ne0ii 4319 . 2 ω ≠ ∅
3 cfom 10278 . 2 (cf‘ω) = ω
4 nnfi 9181 . . . . 5 (𝑥 ∈ ω → 𝑥 ∈ Fin)
5 pwfi 9329 . . . . 5 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
64, 5sylib 218 . . . 4 (𝑥 ∈ ω → 𝒫 𝑥 ∈ Fin)
7 isfinite 9666 . . . 4 (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω)
86, 7sylib 218 . . 3 (𝑥 ∈ ω → 𝒫 𝑥 ≺ ω)
98rgen 3053 . 2 𝑥 ∈ ω 𝒫 𝑥 ≺ ω
10 elina 10701 . 2 (ω ∈ Inacc ↔ (ω ≠ ∅ ∧ (cf‘ω) = ω ∧ ∀𝑥 ∈ ω 𝒫 𝑥 ≺ ω))
112, 3, 9, 10mpbir3an 1342 1 ω ∈ Inacc
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wne 2932  wral 3051  c0 4308  𝒫 cpw 4575   class class class wbr 5119  cfv 6531  ωcom 7861  csdm 8958  Fincfn 8959  cfccf 9951  Inacccina 10697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-cf 9955  df-ina 10699
This theorem is referenced by:  r1omALT  10790  r1omtsk  10793
  Copyright terms: Public domain W3C validator