![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omina | Structured version Visualization version GIF version |
Description: ω is a strongly inaccessible cardinal. (Many definitions of "inaccessible" explicitly disallow ω as an inaccessible cardinal, but this choice allows to reuse our results for inaccessibles for ω.) (Contributed by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
omina | ⊢ ω ∈ Inacc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7911 | . . 3 ⊢ ∅ ∈ ω | |
2 | 1 | ne0ii 4350 | . 2 ⊢ ω ≠ ∅ |
3 | cfom 10302 | . 2 ⊢ (cf‘ω) = ω | |
4 | nnfi 9206 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
5 | pwfi 9355 | . . . . 5 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
6 | 4, 5 | sylib 218 | . . . 4 ⊢ (𝑥 ∈ ω → 𝒫 𝑥 ∈ Fin) |
7 | isfinite 9690 | . . . 4 ⊢ (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω) | |
8 | 6, 7 | sylib 218 | . . 3 ⊢ (𝑥 ∈ ω → 𝒫 𝑥 ≺ ω) |
9 | 8 | rgen 3061 | . 2 ⊢ ∀𝑥 ∈ ω 𝒫 𝑥 ≺ ω |
10 | elina 10725 | . 2 ⊢ (ω ∈ Inacc ↔ (ω ≠ ∅ ∧ (cf‘ω) = ω ∧ ∀𝑥 ∈ ω 𝒫 𝑥 ≺ ω)) | |
11 | 2, 3, 9, 10 | mpbir3an 1340 | 1 ⊢ ω ∈ Inacc |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∅c0 4339 𝒫 cpw 4605 class class class wbr 5148 ‘cfv 6563 ωcom 7887 ≺ csdm 8983 Fincfn 8984 cfccf 9975 Inacccina 10721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-cf 9979 df-ina 10723 |
This theorem is referenced by: r1omALT 10814 r1omtsk 10817 |
Copyright terms: Public domain | W3C validator |