Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  omina Structured version   Visualization version   GIF version

Theorem omina 9828
 Description: ω is a strongly inaccessible cardinal. (Many definitions of "inaccessible" explicitly disallow ω as an inaccessible cardinal, but this choice allows us to reuse our results for inaccessibles for ω.) (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
omina ω ∈ Inacc

Proof of Theorem omina
StepHypRef Expression
1 peano1 7346 . . 3 ∅ ∈ ω
21ne0ii 4153 . 2 ω ≠ ∅
3 cfom 9401 . 2 (cf‘ω) = ω
4 nnfi 8422 . . . . 5 (𝑥 ∈ ω → 𝑥 ∈ Fin)
5 pwfi 8530 . . . . 5 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
64, 5sylib 210 . . . 4 (𝑥 ∈ ω → 𝒫 𝑥 ∈ Fin)
7 isfinite 8826 . . . 4 (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω)
86, 7sylib 210 . . 3 (𝑥 ∈ ω → 𝒫 𝑥 ≺ ω)
98rgen 3131 . 2 𝑥 ∈ ω 𝒫 𝑥 ≺ ω
10 elina 9824 . 2 (ω ∈ Inacc ↔ (ω ≠ ∅ ∧ (cf‘ω) = ω ∧ ∀𝑥 ∈ ω 𝒫 𝑥 ≺ ω))
112, 3, 9, 10mpbir3an 1447 1 ω ∈ Inacc
 Colors of variables: wff setvar class Syntax hints:   = wceq 1658   ∈ wcel 2166   ≠ wne 2999  ∀wral 3117  ∅c0 4144  𝒫 cpw 4378   class class class wbr 4873  ‘cfv 6123  ωcom 7326   ≺ csdm 8221  Fincfn 8222  cfccf 9076  Inacccina 9820 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-cf 9080  df-ina 9822 This theorem is referenced by:  r1omALT  9913  r1omtsk  9916
 Copyright terms: Public domain W3C validator