MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omina Structured version   Visualization version   GIF version

Theorem omina 10585
Description: ω is a strongly inaccessible cardinal. (Many definitions of "inaccessible" explicitly disallow ω as an inaccessible cardinal, but this choice allows to reuse our results for inaccessibles for ω.) (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
omina ω ∈ Inacc

Proof of Theorem omina
StepHypRef Expression
1 peano1 7822 . . 3 ∅ ∈ ω
21ne0ii 4295 . 2 ω ≠ ∅
3 cfom 10158 . 2 (cf‘ω) = ω
4 nnfi 9081 . . . . 5 (𝑥 ∈ ω → 𝑥 ∈ Fin)
5 pwfi 9208 . . . . 5 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
64, 5sylib 218 . . . 4 (𝑥 ∈ ω → 𝒫 𝑥 ∈ Fin)
7 isfinite 9548 . . . 4 (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω)
86, 7sylib 218 . . 3 (𝑥 ∈ ω → 𝒫 𝑥 ≺ ω)
98rgen 3046 . 2 𝑥 ∈ ω 𝒫 𝑥 ≺ ω
10 elina 10581 . 2 (ω ∈ Inacc ↔ (ω ≠ ∅ ∧ (cf‘ω) = ω ∧ ∀𝑥 ∈ ω 𝒫 𝑥 ≺ ω))
112, 3, 9, 10mpbir3an 1342 1 ω ∈ Inacc
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4284  𝒫 cpw 4551   class class class wbr 5092  cfv 6482  ωcom 7799  csdm 8871  Fincfn 8872  cfccf 9833  Inacccina 10577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-cf 9837  df-ina 10579
This theorem is referenced by:  r1omALT  10670  r1omtsk  10673
  Copyright terms: Public domain W3C validator