MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem10 Structured version   Visualization version   GIF version

Theorem fpwwe2lem10 10709
Description: Lemma for fpwwe2 10712. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2.4 𝑋 = dom 𝑊
Assertion
Ref Expression
fpwwe2lem10 (𝜑𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem10
Dummy variables 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwwe2.1 . . . . . 6 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
21relopabiv 5844 . . . . 5 Rel 𝑊
32a1i 11 . . . 4 (𝜑 → Rel 𝑊)
4 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))
5 fpwwe2.2 . . . . . . . . . . . . . . 15 (𝜑𝐴𝑉)
61, 5fpwwe2lem2 10701 . . . . . . . . . . . . . 14 (𝜑 → (𝑤𝑊𝑡 ↔ ((𝑤𝐴𝑡 ⊆ (𝑤 × 𝑤)) ∧ (𝑡 We 𝑤 ∧ ∀𝑦𝑤 [(𝑡 “ {𝑦}) / 𝑢](𝑢𝐹(𝑡 ∩ (𝑢 × 𝑢))) = 𝑦))))
76simprbda 498 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊𝑡) → (𝑤𝐴𝑡 ⊆ (𝑤 × 𝑤)))
87simprd 495 . . . . . . . . . . . 12 ((𝜑𝑤𝑊𝑡) → 𝑡 ⊆ (𝑤 × 𝑤))
98adantrl 715 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑡 ⊆ (𝑤 × 𝑤))
109adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑡 ⊆ (𝑤 × 𝑤))
11 dfss2 3994 . . . . . . . . . 10 (𝑡 ⊆ (𝑤 × 𝑤) ↔ (𝑡 ∩ (𝑤 × 𝑤)) = 𝑡)
1210, 11sylib 218 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → (𝑡 ∩ (𝑤 × 𝑤)) = 𝑡)
134, 12eqtrd 2780 . . . . . . . 8 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑠 = 𝑡)
14 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))
151, 5fpwwe2lem2 10701 . . . . . . . . . . . . . 14 (𝜑 → (𝑤𝑊𝑠 ↔ ((𝑤𝐴𝑠 ⊆ (𝑤 × 𝑤)) ∧ (𝑠 We 𝑤 ∧ ∀𝑦𝑤 [(𝑠 “ {𝑦}) / 𝑢](𝑢𝐹(𝑠 ∩ (𝑢 × 𝑢))) = 𝑦))))
1615simprbda 498 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊𝑠) → (𝑤𝐴𝑠 ⊆ (𝑤 × 𝑤)))
1716simprd 495 . . . . . . . . . . . 12 ((𝜑𝑤𝑊𝑠) → 𝑠 ⊆ (𝑤 × 𝑤))
1817adantrr 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑠 ⊆ (𝑤 × 𝑤))
1918adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑠 ⊆ (𝑤 × 𝑤))
20 dfss2 3994 . . . . . . . . . 10 (𝑠 ⊆ (𝑤 × 𝑤) ↔ (𝑠 ∩ (𝑤 × 𝑤)) = 𝑠)
2119, 20sylib 218 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → (𝑠 ∩ (𝑤 × 𝑤)) = 𝑠)
2214, 21eqtr2d 2781 . . . . . . . 8 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑠 = 𝑡)
235adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝐴𝑉)
24 fpwwe2.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
2524adantlr 714 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
26 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑤𝑊𝑠)
27 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑤𝑊𝑡)
281, 23, 25, 26, 27fpwwe2lem9 10708 . . . . . . . 8 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → ((𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤))) ∨ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))))
2913, 22, 28mpjaodan 959 . . . . . . 7 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑠 = 𝑡)
3029ex 412 . . . . . 6 (𝜑 → ((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
3130alrimiv 1926 . . . . 5 (𝜑 → ∀𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
3231alrimivv 1927 . . . 4 (𝜑 → ∀𝑤𝑠𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
33 dffun2 6583 . . . 4 (Fun 𝑊 ↔ (Rel 𝑊 ∧ ∀𝑤𝑠𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡)))
343, 32, 33sylanbrc 582 . . 3 (𝜑 → Fun 𝑊)
3534funfnd 6609 . 2 (𝜑𝑊 Fn dom 𝑊)
36 vex 3492 . . . . 5 𝑠 ∈ V
3736elrn 5918 . . . 4 (𝑠 ∈ ran 𝑊 ↔ ∃𝑤 𝑤𝑊𝑠)
382releldmi 5973 . . . . . . . . . . . 12 (𝑤𝑊𝑠𝑤 ∈ dom 𝑊)
3938adantl 481 . . . . . . . . . . 11 ((𝜑𝑤𝑊𝑠) → 𝑤 ∈ dom 𝑊)
40 elssuni 4961 . . . . . . . . . . 11 (𝑤 ∈ dom 𝑊𝑤 dom 𝑊)
4139, 40syl 17 . . . . . . . . . 10 ((𝜑𝑤𝑊𝑠) → 𝑤 dom 𝑊)
42 fpwwe2.4 . . . . . . . . . 10 𝑋 = dom 𝑊
4341, 42sseqtrrdi 4060 . . . . . . . . 9 ((𝜑𝑤𝑊𝑠) → 𝑤𝑋)
44 xpss12 5715 . . . . . . . . 9 ((𝑤𝑋𝑤𝑋) → (𝑤 × 𝑤) ⊆ (𝑋 × 𝑋))
4543, 43, 44syl2anc 583 . . . . . . . 8 ((𝜑𝑤𝑊𝑠) → (𝑤 × 𝑤) ⊆ (𝑋 × 𝑋))
4617, 45sstrd 4019 . . . . . . 7 ((𝜑𝑤𝑊𝑠) → 𝑠 ⊆ (𝑋 × 𝑋))
4746ex 412 . . . . . 6 (𝜑 → (𝑤𝑊𝑠𝑠 ⊆ (𝑋 × 𝑋)))
48 velpw 4627 . . . . . 6 (𝑠 ∈ 𝒫 (𝑋 × 𝑋) ↔ 𝑠 ⊆ (𝑋 × 𝑋))
4947, 48imbitrrdi 252 . . . . 5 (𝜑 → (𝑤𝑊𝑠𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5049exlimdv 1932 . . . 4 (𝜑 → (∃𝑤 𝑤𝑊𝑠𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5137, 50biimtrid 242 . . 3 (𝜑 → (𝑠 ∈ ran 𝑊𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5251ssrdv 4014 . 2 (𝜑 → ran 𝑊 ⊆ 𝒫 (𝑋 × 𝑋))
53 df-f 6577 . 2 (𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋) ↔ (𝑊 Fn dom 𝑊 ∧ ran 𝑊 ⊆ 𝒫 (𝑋 × 𝑋)))
5435, 52, 53sylanbrc 582 1 (𝜑𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  wral 3067  [wsbc 3804  cin 3975  wss 3976  𝒫 cpw 4622  {csn 4648   cuni 4931   class class class wbr 5166  {copab 5228   We wwe 5651   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Rel wrel 5705  Fun wfun 6567   Fn wfn 6568  wf 6569  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-oi 9579
This theorem is referenced by:  fpwwe2lem12  10711  fpwwe2  10712
  Copyright terms: Public domain W3C validator