Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem10 Structured version   Visualization version   GIF version

Theorem fpwwe2lem10 10069
 Description: Lemma for fpwwe2 10072. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2.4 𝑋 = dom 𝑊
Assertion
Ref Expression
fpwwe2lem10 (𝜑𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem10
Dummy variables 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwwe2.1 . . . . . 6 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
21relopabi 5662 . . . . 5 Rel 𝑊
32a1i 11 . . . 4 (𝜑 → Rel 𝑊)
4 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))
5 fpwwe2.2 . . . . . . . . . . . . . . 15 (𝜑𝐴𝑉)
61, 5fpwwe2lem2 10061 . . . . . . . . . . . . . 14 (𝜑 → (𝑤𝑊𝑡 ↔ ((𝑤𝐴𝑡 ⊆ (𝑤 × 𝑤)) ∧ (𝑡 We 𝑤 ∧ ∀𝑦𝑤 [(𝑡 “ {𝑦}) / 𝑢](𝑢𝐹(𝑡 ∩ (𝑢 × 𝑢))) = 𝑦))))
76simprbda 502 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊𝑡) → (𝑤𝐴𝑡 ⊆ (𝑤 × 𝑤)))
87simprd 499 . . . . . . . . . . . 12 ((𝜑𝑤𝑊𝑡) → 𝑡 ⊆ (𝑤 × 𝑤))
98adantrl 715 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑡 ⊆ (𝑤 × 𝑤))
109adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑡 ⊆ (𝑤 × 𝑤))
11 df-ss 3900 . . . . . . . . . 10 (𝑡 ⊆ (𝑤 × 𝑤) ↔ (𝑡 ∩ (𝑤 × 𝑤)) = 𝑡)
1210, 11sylib 221 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → (𝑡 ∩ (𝑤 × 𝑤)) = 𝑡)
134, 12eqtrd 2833 . . . . . . . 8 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑠 = 𝑡)
14 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))
151, 5fpwwe2lem2 10061 . . . . . . . . . . . . . 14 (𝜑 → (𝑤𝑊𝑠 ↔ ((𝑤𝐴𝑠 ⊆ (𝑤 × 𝑤)) ∧ (𝑠 We 𝑤 ∧ ∀𝑦𝑤 [(𝑠 “ {𝑦}) / 𝑢](𝑢𝐹(𝑠 ∩ (𝑢 × 𝑢))) = 𝑦))))
1615simprbda 502 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊𝑠) → (𝑤𝐴𝑠 ⊆ (𝑤 × 𝑤)))
1716simprd 499 . . . . . . . . . . . 12 ((𝜑𝑤𝑊𝑠) → 𝑠 ⊆ (𝑤 × 𝑤))
1817adantrr 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑠 ⊆ (𝑤 × 𝑤))
1918adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑠 ⊆ (𝑤 × 𝑤))
20 df-ss 3900 . . . . . . . . . 10 (𝑠 ⊆ (𝑤 × 𝑤) ↔ (𝑠 ∩ (𝑤 × 𝑤)) = 𝑠)
2119, 20sylib 221 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → (𝑠 ∩ (𝑤 × 𝑤)) = 𝑠)
2214, 21eqtr2d 2834 . . . . . . . 8 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑠 = 𝑡)
235adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝐴𝑉)
24 fpwwe2.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
2524adantlr 714 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
26 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑤𝑊𝑠)
27 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑤𝑊𝑡)
281, 23, 25, 26, 27fpwwe2lem9 10068 . . . . . . . 8 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → ((𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤))) ∨ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))))
2913, 22, 28mpjaodan 956 . . . . . . 7 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑠 = 𝑡)
3029ex 416 . . . . . 6 (𝜑 → ((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
3130alrimiv 1928 . . . . 5 (𝜑 → ∀𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
3231alrimivv 1929 . . . 4 (𝜑 → ∀𝑤𝑠𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
33 dffun2 6342 . . . 4 (Fun 𝑊 ↔ (Rel 𝑊 ∧ ∀𝑤𝑠𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡)))
343, 32, 33sylanbrc 586 . . 3 (𝜑 → Fun 𝑊)
3534funfnd 6363 . 2 (𝜑𝑊 Fn dom 𝑊)
36 vex 3445 . . . . 5 𝑠 ∈ V
3736elrn 5732 . . . 4 (𝑠 ∈ ran 𝑊 ↔ ∃𝑤 𝑤𝑊𝑠)
382releldmi 5788 . . . . . . . . . . . 12 (𝑤𝑊𝑠𝑤 ∈ dom 𝑊)
3938adantl 485 . . . . . . . . . . 11 ((𝜑𝑤𝑊𝑠) → 𝑤 ∈ dom 𝑊)
40 elssuni 4834 . . . . . . . . . . 11 (𝑤 ∈ dom 𝑊𝑤 dom 𝑊)
4139, 40syl 17 . . . . . . . . . 10 ((𝜑𝑤𝑊𝑠) → 𝑤 dom 𝑊)
42 fpwwe2.4 . . . . . . . . . 10 𝑋 = dom 𝑊
4341, 42sseqtrrdi 3968 . . . . . . . . 9 ((𝜑𝑤𝑊𝑠) → 𝑤𝑋)
44 xpss12 5538 . . . . . . . . 9 ((𝑤𝑋𝑤𝑋) → (𝑤 × 𝑤) ⊆ (𝑋 × 𝑋))
4543, 43, 44syl2anc 587 . . . . . . . 8 ((𝜑𝑤𝑊𝑠) → (𝑤 × 𝑤) ⊆ (𝑋 × 𝑋))
4617, 45sstrd 3927 . . . . . . 7 ((𝜑𝑤𝑊𝑠) → 𝑠 ⊆ (𝑋 × 𝑋))
4746ex 416 . . . . . 6 (𝜑 → (𝑤𝑊𝑠𝑠 ⊆ (𝑋 × 𝑋)))
48 velpw 4505 . . . . . 6 (𝑠 ∈ 𝒫 (𝑋 × 𝑋) ↔ 𝑠 ⊆ (𝑋 × 𝑋))
4947, 48syl6ibr 255 . . . . 5 (𝜑 → (𝑤𝑊𝑠𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5049exlimdv 1934 . . . 4 (𝜑 → (∃𝑤 𝑤𝑊𝑠𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5137, 50syl5bi 245 . . 3 (𝜑 → (𝑠 ∈ ran 𝑊𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5251ssrdv 3923 . 2 (𝜑 → ran 𝑊 ⊆ 𝒫 (𝑋 × 𝑋))
53 df-f 6336 . 2 (𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋) ↔ (𝑊 Fn dom 𝑊 ∧ ran 𝑊 ⊆ 𝒫 (𝑋 × 𝑋)))
5435, 52, 53sylanbrc 586 1 (𝜑𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084  ∀wal 1536   = wceq 1538  ∃wex 1781   ∈ wcel 2111  ∀wral 3106  [wsbc 3722   ∩ cin 3882   ⊆ wss 3883  𝒫 cpw 4500  {csn 4528  ∪ cuni 4804   class class class wbr 5034  {copab 5096   We wwe 5481   × cxp 5521  ◡ccnv 5522  dom cdm 5523  ran crn 5524   “ cima 5526  Rel wrel 5528  Fun wfun 6326   Fn wfn 6327  ⟶wf 6328  (class class class)co 7145 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-wrecs 7948  df-recs 8009  df-oi 8976 This theorem is referenced by:  fpwwe2lem12  10071  fpwwe2  10072
 Copyright terms: Public domain W3C validator