MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem10 Structured version   Visualization version   GIF version

Theorem fpwwe2lem10 10531
Description: Lemma for fpwwe2 10534. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2.4 𝑋 = dom 𝑊
Assertion
Ref Expression
fpwwe2lem10 (𝜑𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem10
Dummy variables 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwwe2.1 . . . . . 6 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
21relopabiv 5759 . . . . 5 Rel 𝑊
32a1i 11 . . . 4 (𝜑 → Rel 𝑊)
4 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))
5 fpwwe2.2 . . . . . . . . . . . . . . 15 (𝜑𝐴𝑉)
61, 5fpwwe2lem2 10523 . . . . . . . . . . . . . 14 (𝜑 → (𝑤𝑊𝑡 ↔ ((𝑤𝐴𝑡 ⊆ (𝑤 × 𝑤)) ∧ (𝑡 We 𝑤 ∧ ∀𝑦𝑤 [(𝑡 “ {𝑦}) / 𝑢](𝑢𝐹(𝑡 ∩ (𝑢 × 𝑢))) = 𝑦))))
76simprbda 498 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊𝑡) → (𝑤𝐴𝑡 ⊆ (𝑤 × 𝑤)))
87simprd 495 . . . . . . . . . . . 12 ((𝜑𝑤𝑊𝑡) → 𝑡 ⊆ (𝑤 × 𝑤))
98adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑡 ⊆ (𝑤 × 𝑤))
109adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑡 ⊆ (𝑤 × 𝑤))
11 dfss2 3915 . . . . . . . . . 10 (𝑡 ⊆ (𝑤 × 𝑤) ↔ (𝑡 ∩ (𝑤 × 𝑤)) = 𝑡)
1210, 11sylib 218 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → (𝑡 ∩ (𝑤 × 𝑤)) = 𝑡)
134, 12eqtrd 2766 . . . . . . . 8 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑠 = 𝑡)
14 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))
151, 5fpwwe2lem2 10523 . . . . . . . . . . . . . 14 (𝜑 → (𝑤𝑊𝑠 ↔ ((𝑤𝐴𝑠 ⊆ (𝑤 × 𝑤)) ∧ (𝑠 We 𝑤 ∧ ∀𝑦𝑤 [(𝑠 “ {𝑦}) / 𝑢](𝑢𝐹(𝑠 ∩ (𝑢 × 𝑢))) = 𝑦))))
1615simprbda 498 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊𝑠) → (𝑤𝐴𝑠 ⊆ (𝑤 × 𝑤)))
1716simprd 495 . . . . . . . . . . . 12 ((𝜑𝑤𝑊𝑠) → 𝑠 ⊆ (𝑤 × 𝑤))
1817adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑠 ⊆ (𝑤 × 𝑤))
1918adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑠 ⊆ (𝑤 × 𝑤))
20 dfss2 3915 . . . . . . . . . 10 (𝑠 ⊆ (𝑤 × 𝑤) ↔ (𝑠 ∩ (𝑤 × 𝑤)) = 𝑠)
2119, 20sylib 218 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → (𝑠 ∩ (𝑤 × 𝑤)) = 𝑠)
2214, 21eqtr2d 2767 . . . . . . . 8 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑠 = 𝑡)
235adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝐴𝑉)
24 fpwwe2.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
2524adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
26 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑤𝑊𝑠)
27 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑤𝑊𝑡)
281, 23, 25, 26, 27fpwwe2lem9 10530 . . . . . . . 8 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → ((𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤))) ∨ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))))
2913, 22, 28mpjaodan 960 . . . . . . 7 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑠 = 𝑡)
3029ex 412 . . . . . 6 (𝜑 → ((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
3130alrimiv 1928 . . . . 5 (𝜑 → ∀𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
3231alrimivv 1929 . . . 4 (𝜑 → ∀𝑤𝑠𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
33 dffun2 6491 . . . 4 (Fun 𝑊 ↔ (Rel 𝑊 ∧ ∀𝑤𝑠𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡)))
343, 32, 33sylanbrc 583 . . 3 (𝜑 → Fun 𝑊)
3534funfnd 6512 . 2 (𝜑𝑊 Fn dom 𝑊)
36 vex 3440 . . . . 5 𝑠 ∈ V
3736elrn 5832 . . . 4 (𝑠 ∈ ran 𝑊 ↔ ∃𝑤 𝑤𝑊𝑠)
382releldmi 5887 . . . . . . . . . . . 12 (𝑤𝑊𝑠𝑤 ∈ dom 𝑊)
3938adantl 481 . . . . . . . . . . 11 ((𝜑𝑤𝑊𝑠) → 𝑤 ∈ dom 𝑊)
40 elssuni 4887 . . . . . . . . . . 11 (𝑤 ∈ dom 𝑊𝑤 dom 𝑊)
4139, 40syl 17 . . . . . . . . . 10 ((𝜑𝑤𝑊𝑠) → 𝑤 dom 𝑊)
42 fpwwe2.4 . . . . . . . . . 10 𝑋 = dom 𝑊
4341, 42sseqtrrdi 3971 . . . . . . . . 9 ((𝜑𝑤𝑊𝑠) → 𝑤𝑋)
44 xpss12 5629 . . . . . . . . 9 ((𝑤𝑋𝑤𝑋) → (𝑤 × 𝑤) ⊆ (𝑋 × 𝑋))
4543, 43, 44syl2anc 584 . . . . . . . 8 ((𝜑𝑤𝑊𝑠) → (𝑤 × 𝑤) ⊆ (𝑋 × 𝑋))
4617, 45sstrd 3940 . . . . . . 7 ((𝜑𝑤𝑊𝑠) → 𝑠 ⊆ (𝑋 × 𝑋))
4746ex 412 . . . . . 6 (𝜑 → (𝑤𝑊𝑠𝑠 ⊆ (𝑋 × 𝑋)))
48 velpw 4552 . . . . . 6 (𝑠 ∈ 𝒫 (𝑋 × 𝑋) ↔ 𝑠 ⊆ (𝑋 × 𝑋))
4947, 48imbitrrdi 252 . . . . 5 (𝜑 → (𝑤𝑊𝑠𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5049exlimdv 1934 . . . 4 (𝜑 → (∃𝑤 𝑤𝑊𝑠𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5137, 50biimtrid 242 . . 3 (𝜑 → (𝑠 ∈ ran 𝑊𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5251ssrdv 3935 . 2 (𝜑 → ran 𝑊 ⊆ 𝒫 (𝑋 × 𝑋))
53 df-f 6485 . 2 (𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋) ↔ (𝑊 Fn dom 𝑊 ∧ ran 𝑊 ⊆ 𝒫 (𝑋 × 𝑋)))
5435, 52, 53sylanbrc 583 1 (𝜑𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111  wral 3047  [wsbc 3736  cin 3896  wss 3897  𝒫 cpw 4547  {csn 4573   cuni 4856   class class class wbr 5089  {copab 5151   We wwe 5566   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  Rel wrel 5619  Fun wfun 6475   Fn wfn 6476  wf 6477  (class class class)co 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-oi 9396
This theorem is referenced by:  fpwwe2lem12  10533  fpwwe2  10534
  Copyright terms: Public domain W3C validator