Step | Hyp | Ref
| Expression |
1 | | fpwwe2.1 |
. . . . . 6
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
2 | 1 | relopabiv 5719 |
. . . . 5
⊢ Rel 𝑊 |
3 | 2 | a1i 11 |
. . . 4
⊢ (𝜑 → Rel 𝑊) |
4 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) ∧ (𝑤 ⊆ 𝑤 ∧ 𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑠 = (𝑡 ∩ (𝑤 × 𝑤))) |
5 | | fpwwe2.2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
6 | 1, 5 | fpwwe2lem2 10319 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑤𝑊𝑡 ↔ ((𝑤 ⊆ 𝐴 ∧ 𝑡 ⊆ (𝑤 × 𝑤)) ∧ (𝑡 We 𝑤 ∧ ∀𝑦 ∈ 𝑤 [(◡𝑡 “ {𝑦}) / 𝑢](𝑢𝐹(𝑡 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
7 | 6 | simprbda 498 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤𝑊𝑡) → (𝑤 ⊆ 𝐴 ∧ 𝑡 ⊆ (𝑤 × 𝑤))) |
8 | 7 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤𝑊𝑡) → 𝑡 ⊆ (𝑤 × 𝑤)) |
9 | 8 | adantrl 712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) → 𝑡 ⊆ (𝑤 × 𝑤)) |
10 | 9 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) ∧ (𝑤 ⊆ 𝑤 ∧ 𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑡 ⊆ (𝑤 × 𝑤)) |
11 | | df-ss 3900 |
. . . . . . . . . 10
⊢ (𝑡 ⊆ (𝑤 × 𝑤) ↔ (𝑡 ∩ (𝑤 × 𝑤)) = 𝑡) |
12 | 10, 11 | sylib 217 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) ∧ (𝑤 ⊆ 𝑤 ∧ 𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → (𝑡 ∩ (𝑤 × 𝑤)) = 𝑡) |
13 | 4, 12 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) ∧ (𝑤 ⊆ 𝑤 ∧ 𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑠 = 𝑡) |
14 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) ∧ (𝑤 ⊆ 𝑤 ∧ 𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑡 = (𝑠 ∩ (𝑤 × 𝑤))) |
15 | 1, 5 | fpwwe2lem2 10319 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑤𝑊𝑠 ↔ ((𝑤 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑤 × 𝑤)) ∧ (𝑠 We 𝑤 ∧ ∀𝑦 ∈ 𝑤 [(◡𝑠 “ {𝑦}) / 𝑢](𝑢𝐹(𝑠 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
16 | 15 | simprbda 498 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤𝑊𝑠) → (𝑤 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑤 × 𝑤))) |
17 | 16 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤𝑊𝑠) → 𝑠 ⊆ (𝑤 × 𝑤)) |
18 | 17 | adantrr 713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) → 𝑠 ⊆ (𝑤 × 𝑤)) |
19 | 18 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) ∧ (𝑤 ⊆ 𝑤 ∧ 𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑠 ⊆ (𝑤 × 𝑤)) |
20 | | df-ss 3900 |
. . . . . . . . . 10
⊢ (𝑠 ⊆ (𝑤 × 𝑤) ↔ (𝑠 ∩ (𝑤 × 𝑤)) = 𝑠) |
21 | 19, 20 | sylib 217 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) ∧ (𝑤 ⊆ 𝑤 ∧ 𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → (𝑠 ∩ (𝑤 × 𝑤)) = 𝑠) |
22 | 14, 21 | eqtr2d 2779 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) ∧ (𝑤 ⊆ 𝑤 ∧ 𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑠 = 𝑡) |
23 | 5 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) → 𝐴 ∈ 𝑉) |
24 | | fpwwe2.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
25 | 24 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
26 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) → 𝑤𝑊𝑠) |
27 | | simprr 769 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) → 𝑤𝑊𝑡) |
28 | 1, 23, 25, 26, 27 | fpwwe2lem9 10326 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) → ((𝑤 ⊆ 𝑤 ∧ 𝑠 = (𝑡 ∩ (𝑤 × 𝑤))) ∨ (𝑤 ⊆ 𝑤 ∧ 𝑡 = (𝑠 ∩ (𝑤 × 𝑤))))) |
29 | 13, 22, 28 | mpjaodan 955 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡)) → 𝑠 = 𝑡) |
30 | 29 | ex 412 |
. . . . . 6
⊢ (𝜑 → ((𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡) → 𝑠 = 𝑡)) |
31 | 30 | alrimiv 1931 |
. . . . 5
⊢ (𝜑 → ∀𝑡((𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡) → 𝑠 = 𝑡)) |
32 | 31 | alrimivv 1932 |
. . . 4
⊢ (𝜑 → ∀𝑤∀𝑠∀𝑡((𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡) → 𝑠 = 𝑡)) |
33 | | dffun2 6428 |
. . . 4
⊢ (Fun
𝑊 ↔ (Rel 𝑊 ∧ ∀𝑤∀𝑠∀𝑡((𝑤𝑊𝑠 ∧ 𝑤𝑊𝑡) → 𝑠 = 𝑡))) |
34 | 3, 32, 33 | sylanbrc 582 |
. . 3
⊢ (𝜑 → Fun 𝑊) |
35 | 34 | funfnd 6449 |
. 2
⊢ (𝜑 → 𝑊 Fn dom 𝑊) |
36 | | vex 3426 |
. . . . 5
⊢ 𝑠 ∈ V |
37 | 36 | elrn 5791 |
. . . 4
⊢ (𝑠 ∈ ran 𝑊 ↔ ∃𝑤 𝑤𝑊𝑠) |
38 | 2 | releldmi 5846 |
. . . . . . . . . . . 12
⊢ (𝑤𝑊𝑠 → 𝑤 ∈ dom 𝑊) |
39 | 38 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤𝑊𝑠) → 𝑤 ∈ dom 𝑊) |
40 | | elssuni 4868 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ dom 𝑊 → 𝑤 ⊆ ∪ dom
𝑊) |
41 | 39, 40 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤𝑊𝑠) → 𝑤 ⊆ ∪ dom
𝑊) |
42 | | fpwwe2.4 |
. . . . . . . . . 10
⊢ 𝑋 = ∪
dom 𝑊 |
43 | 41, 42 | sseqtrrdi 3968 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤𝑊𝑠) → 𝑤 ⊆ 𝑋) |
44 | | xpss12 5595 |
. . . . . . . . 9
⊢ ((𝑤 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋) → (𝑤 × 𝑤) ⊆ (𝑋 × 𝑋)) |
45 | 43, 43, 44 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤𝑊𝑠) → (𝑤 × 𝑤) ⊆ (𝑋 × 𝑋)) |
46 | 17, 45 | sstrd 3927 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤𝑊𝑠) → 𝑠 ⊆ (𝑋 × 𝑋)) |
47 | 46 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑤𝑊𝑠 → 𝑠 ⊆ (𝑋 × 𝑋))) |
48 | | velpw 4535 |
. . . . . 6
⊢ (𝑠 ∈ 𝒫 (𝑋 × 𝑋) ↔ 𝑠 ⊆ (𝑋 × 𝑋)) |
49 | 47, 48 | syl6ibr 251 |
. . . . 5
⊢ (𝜑 → (𝑤𝑊𝑠 → 𝑠 ∈ 𝒫 (𝑋 × 𝑋))) |
50 | 49 | exlimdv 1937 |
. . . 4
⊢ (𝜑 → (∃𝑤 𝑤𝑊𝑠 → 𝑠 ∈ 𝒫 (𝑋 × 𝑋))) |
51 | 37, 50 | syl5bi 241 |
. . 3
⊢ (𝜑 → (𝑠 ∈ ran 𝑊 → 𝑠 ∈ 𝒫 (𝑋 × 𝑋))) |
52 | 51 | ssrdv 3923 |
. 2
⊢ (𝜑 → ran 𝑊 ⊆ 𝒫 (𝑋 × 𝑋)) |
53 | | df-f 6422 |
. 2
⊢ (𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋) ↔ (𝑊 Fn dom 𝑊 ∧ ran 𝑊 ⊆ 𝒫 (𝑋 × 𝑋))) |
54 | 35, 52, 53 | sylanbrc 582 |
1
⊢ (𝜑 → 𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋)) |