| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsingles | Structured version Visualization version GIF version | ||
| Description: Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| elsingles | ⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ Singletons → 𝐴 ∈ V) | |
| 2 | vsnex 5374 | . . . 4 ⊢ {𝑥} ∈ V | |
| 3 | eleq1 2819 | . . . 4 ⊢ (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V)) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝐴 = {𝑥} → 𝐴 ∈ V) |
| 5 | 4 | exlimiv 1931 | . 2 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 ∈ V) |
| 6 | eleq1 2819 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ Singletons ↔ 𝐴 ∈ Singletons )) | |
| 7 | eqeq1 2735 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 = {𝑥} ↔ 𝐴 = {𝑥})) | |
| 8 | 7 | exbidv 1922 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 𝑦 = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥})) |
| 9 | df-singles 35912 | . . . . 5 ⊢ Singletons = ran Singleton | |
| 10 | 9 | eleq2i 2823 | . . . 4 ⊢ (𝑦 ∈ Singletons ↔ 𝑦 ∈ ran Singleton) |
| 11 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 12 | 11 | elrn 5838 | . . . 4 ⊢ (𝑦 ∈ ran Singleton ↔ ∃𝑥 𝑥Singleton𝑦) |
| 13 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 14 | 13, 11 | brsingle 35966 | . . . . 5 ⊢ (𝑥Singleton𝑦 ↔ 𝑦 = {𝑥}) |
| 15 | 14 | exbii 1849 | . . . 4 ⊢ (∃𝑥 𝑥Singleton𝑦 ↔ ∃𝑥 𝑦 = {𝑥}) |
| 16 | 10, 12, 15 | 3bitri 297 | . . 3 ⊢ (𝑦 ∈ Singletons ↔ ∃𝑥 𝑦 = {𝑥}) |
| 17 | 6, 8, 16 | vtoclbg 3510 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥})) |
| 18 | 1, 5, 17 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 {csn 4575 class class class wbr 5093 ran crn 5620 Singletoncsingle 35887 Singletons csingles 35888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-symdif 4202 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-fo 6493 df-fv 6495 df-1st 7927 df-2nd 7928 df-txp 35903 df-singleton 35911 df-singles 35912 |
| This theorem is referenced by: dfsingles2 35970 snelsingles 35971 funpartlem 35993 |
| Copyright terms: Public domain | W3C validator |