| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsingles | Structured version Visualization version GIF version | ||
| Description: Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| elsingles | ⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3484 | . 2 ⊢ (𝐴 ∈ Singletons → 𝐴 ∈ V) | |
| 2 | vsnex 5414 | . . . 4 ⊢ {𝑥} ∈ V | |
| 3 | eleq1 2821 | . . . 4 ⊢ (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V)) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝐴 = {𝑥} → 𝐴 ∈ V) |
| 5 | 4 | exlimiv 1929 | . 2 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 ∈ V) |
| 6 | eleq1 2821 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ Singletons ↔ 𝐴 ∈ Singletons )) | |
| 7 | eqeq1 2738 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 = {𝑥} ↔ 𝐴 = {𝑥})) | |
| 8 | 7 | exbidv 1920 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 𝑦 = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥})) |
| 9 | df-singles 35823 | . . . . 5 ⊢ Singletons = ran Singleton | |
| 10 | 9 | eleq2i 2825 | . . . 4 ⊢ (𝑦 ∈ Singletons ↔ 𝑦 ∈ ran Singleton) |
| 11 | vex 3467 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 12 | 11 | elrn 5884 | . . . 4 ⊢ (𝑦 ∈ ran Singleton ↔ ∃𝑥 𝑥Singleton𝑦) |
| 13 | vex 3467 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 14 | 13, 11 | brsingle 35877 | . . . . 5 ⊢ (𝑥Singleton𝑦 ↔ 𝑦 = {𝑥}) |
| 15 | 14 | exbii 1847 | . . . 4 ⊢ (∃𝑥 𝑥Singleton𝑦 ↔ ∃𝑥 𝑦 = {𝑥}) |
| 16 | 10, 12, 15 | 3bitri 297 | . . 3 ⊢ (𝑦 ∈ Singletons ↔ ∃𝑥 𝑦 = {𝑥}) |
| 17 | 6, 8, 16 | vtoclbg 3540 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥})) |
| 18 | 1, 5, 17 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Vcvv 3463 {csn 4606 class class class wbr 5123 ran crn 5666 Singletoncsingle 35798 Singletons csingles 35799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-symdif 4233 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-eprel 5564 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fo 6547 df-fv 6549 df-1st 7996 df-2nd 7997 df-txp 35814 df-singleton 35822 df-singles 35823 |
| This theorem is referenced by: dfsingles2 35881 snelsingles 35882 funpartlem 35902 |
| Copyright terms: Public domain | W3C validator |