Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsingles Structured version   Visualization version   GIF version

Theorem elsingles 35936
Description: Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
elsingles (𝐴 Singletons ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem elsingles
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3480 . 2 (𝐴 Singletons 𝐴 ∈ V)
2 vsnex 5404 . . . 4 {𝑥} ∈ V
3 eleq1 2822 . . . 4 (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V))
42, 3mpbiri 258 . . 3 (𝐴 = {𝑥} → 𝐴 ∈ V)
54exlimiv 1930 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ∈ V)
6 eleq1 2822 . . 3 (𝑦 = 𝐴 → (𝑦 Singletons 𝐴 Singletons ))
7 eqeq1 2739 . . . 4 (𝑦 = 𝐴 → (𝑦 = {𝑥} ↔ 𝐴 = {𝑥}))
87exbidv 1921 . . 3 (𝑦 = 𝐴 → (∃𝑥 𝑦 = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥}))
9 df-singles 35881 . . . . 5 Singletons = ran Singleton
109eleq2i 2826 . . . 4 (𝑦 Singletons 𝑦 ∈ ran Singleton)
11 vex 3463 . . . . 5 𝑦 ∈ V
1211elrn 5873 . . . 4 (𝑦 ∈ ran Singleton ↔ ∃𝑥 𝑥Singleton𝑦)
13 vex 3463 . . . . . 6 𝑥 ∈ V
1413, 11brsingle 35935 . . . . 5 (𝑥Singleton𝑦𝑦 = {𝑥})
1514exbii 1848 . . . 4 (∃𝑥 𝑥Singleton𝑦 ↔ ∃𝑥 𝑦 = {𝑥})
1610, 12, 153bitri 297 . . 3 (𝑦 Singletons ↔ ∃𝑥 𝑦 = {𝑥})
176, 8, 16vtoclbg 3536 . 2 (𝐴 ∈ V → (𝐴 Singletons ↔ ∃𝑥 𝐴 = {𝑥}))
181, 5, 17pm5.21nii 378 1 (𝐴 Singletons ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459  {csn 4601   class class class wbr 5119  ran crn 5655  Singletoncsingle 35856   Singletons csingles 35857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-symdif 4228  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-eprel 5553  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-1st 7988  df-2nd 7989  df-txp 35872  df-singleton 35880  df-singles 35881
This theorem is referenced by:  dfsingles2  35939  snelsingles  35940  funpartlem  35960
  Copyright terms: Public domain W3C validator