Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsingles Structured version   Visualization version   GIF version

Theorem elsingles 33850
Description: Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
elsingles (𝐴 Singletons ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem elsingles
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3415 . 2 (𝐴 Singletons 𝐴 ∈ V)
2 snex 5295 . . . 4 {𝑥} ∈ V
3 eleq1 2820 . . . 4 (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V))
42, 3mpbiri 261 . . 3 (𝐴 = {𝑥} → 𝐴 ∈ V)
54exlimiv 1936 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ∈ V)
6 eleq1 2820 . . 3 (𝑦 = 𝐴 → (𝑦 Singletons 𝐴 Singletons ))
7 eqeq1 2742 . . . 4 (𝑦 = 𝐴 → (𝑦 = {𝑥} ↔ 𝐴 = {𝑥}))
87exbidv 1927 . . 3 (𝑦 = 𝐴 → (∃𝑥 𝑦 = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥}))
9 df-singles 33795 . . . . 5 Singletons = ran Singleton
109eleq2i 2824 . . . 4 (𝑦 Singletons 𝑦 ∈ ran Singleton)
11 vex 3401 . . . . 5 𝑦 ∈ V
1211elrn 5730 . . . 4 (𝑦 ∈ ran Singleton ↔ ∃𝑥 𝑥Singleton𝑦)
13 vex 3401 . . . . . 6 𝑥 ∈ V
1413, 11brsingle 33849 . . . . 5 (𝑥Singleton𝑦𝑦 = {𝑥})
1514exbii 1854 . . . 4 (∃𝑥 𝑥Singleton𝑦 ↔ ∃𝑥 𝑦 = {𝑥})
1610, 12, 153bitri 300 . . 3 (𝑦 Singletons ↔ ∃𝑥 𝑦 = {𝑥})
176, 8, 16vtoclbg 3472 . 2 (𝐴 ∈ V → (𝐴 Singletons ↔ ∃𝑥 𝐴 = {𝑥}))
181, 5, 17pm5.21nii 383 1 (𝐴 Singletons ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1542  wex 1786  wcel 2113  Vcvv 3397  {csn 4513   class class class wbr 5027  ran crn 5520  Singletoncsingle 33770   Singletons csingles 33771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-symdif 4131  df-nul 4210  df-if 4412  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-eprel 5430  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-fo 6339  df-fv 6341  df-1st 7707  df-2nd 7708  df-txp 33786  df-singleton 33794  df-singles 33795
This theorem is referenced by:  dfsingles2  33853  snelsingles  33854  funpartlem  33874
  Copyright terms: Public domain W3C validator