Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsingles Structured version   Visualization version   GIF version

Theorem elsingles 35361
Description: Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
elsingles (𝐴 Singletons ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem elsingles
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐴 Singletons 𝐴 ∈ V)
2 vsnex 5429 . . . 4 {𝑥} ∈ V
3 eleq1 2820 . . . 4 (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V))
42, 3mpbiri 258 . . 3 (𝐴 = {𝑥} → 𝐴 ∈ V)
54exlimiv 1932 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ∈ V)
6 eleq1 2820 . . 3 (𝑦 = 𝐴 → (𝑦 Singletons 𝐴 Singletons ))
7 eqeq1 2735 . . . 4 (𝑦 = 𝐴 → (𝑦 = {𝑥} ↔ 𝐴 = {𝑥}))
87exbidv 1923 . . 3 (𝑦 = 𝐴 → (∃𝑥 𝑦 = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥}))
9 df-singles 35306 . . . . 5 Singletons = ran Singleton
109eleq2i 2824 . . . 4 (𝑦 Singletons 𝑦 ∈ ran Singleton)
11 vex 3477 . . . . 5 𝑦 ∈ V
1211elrn 5893 . . . 4 (𝑦 ∈ ran Singleton ↔ ∃𝑥 𝑥Singleton𝑦)
13 vex 3477 . . . . . 6 𝑥 ∈ V
1413, 11brsingle 35360 . . . . 5 (𝑥Singleton𝑦𝑦 = {𝑥})
1514exbii 1849 . . . 4 (∃𝑥 𝑥Singleton𝑦 ↔ ∃𝑥 𝑦 = {𝑥})
1610, 12, 153bitri 297 . . 3 (𝑦 Singletons ↔ ∃𝑥 𝑦 = {𝑥})
176, 8, 16vtoclbg 3544 . 2 (𝐴 ∈ V → (𝐴 Singletons ↔ ∃𝑥 𝐴 = {𝑥}))
181, 5, 17pm5.21nii 378 1 (𝐴 Singletons ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wex 1780  wcel 2105  Vcvv 3473  {csn 4628   class class class wbr 5148  ran crn 5677  Singletoncsingle 35281   Singletons csingles 35282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-symdif 4242  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-eprel 5580  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-1st 7979  df-2nd 7980  df-txp 35297  df-singleton 35305  df-singles 35306
This theorem is referenced by:  dfsingles2  35364  snelsingles  35365  funpartlem  35385
  Copyright terms: Public domain W3C validator