| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsingles | Structured version Visualization version GIF version | ||
| Description: Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| elsingles | ⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3455 | . 2 ⊢ (𝐴 ∈ Singletons → 𝐴 ∈ V) | |
| 2 | vsnex 5370 | . . . 4 ⊢ {𝑥} ∈ V | |
| 3 | eleq1 2817 | . . . 4 ⊢ (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V)) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝐴 = {𝑥} → 𝐴 ∈ V) |
| 5 | 4 | exlimiv 1931 | . 2 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 ∈ V) |
| 6 | eleq1 2817 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ Singletons ↔ 𝐴 ∈ Singletons )) | |
| 7 | eqeq1 2734 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 = {𝑥} ↔ 𝐴 = {𝑥})) | |
| 8 | 7 | exbidv 1922 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 𝑦 = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥})) |
| 9 | df-singles 35876 | . . . . 5 ⊢ Singletons = ran Singleton | |
| 10 | 9 | eleq2i 2821 | . . . 4 ⊢ (𝑦 ∈ Singletons ↔ 𝑦 ∈ ran Singleton) |
| 11 | vex 3438 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 12 | 11 | elrn 5831 | . . . 4 ⊢ (𝑦 ∈ ran Singleton ↔ ∃𝑥 𝑥Singleton𝑦) |
| 13 | vex 3438 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 14 | 13, 11 | brsingle 35930 | . . . . 5 ⊢ (𝑥Singleton𝑦 ↔ 𝑦 = {𝑥}) |
| 15 | 14 | exbii 1849 | . . . 4 ⊢ (∃𝑥 𝑥Singleton𝑦 ↔ ∃𝑥 𝑦 = {𝑥}) |
| 16 | 10, 12, 15 | 3bitri 297 | . . 3 ⊢ (𝑦 ∈ Singletons ↔ ∃𝑥 𝑦 = {𝑥}) |
| 17 | 6, 8, 16 | vtoclbg 3510 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥})) |
| 18 | 1, 5, 17 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2110 Vcvv 3434 {csn 4574 class class class wbr 5089 ran crn 5615 Singletoncsingle 35851 Singletons csingles 35852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-symdif 4201 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fo 6483 df-fv 6485 df-1st 7916 df-2nd 7917 df-txp 35867 df-singleton 35875 df-singles 35876 |
| This theorem is referenced by: dfsingles2 35934 snelsingles 35935 funpartlem 35955 |
| Copyright terms: Public domain | W3C validator |