| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsingles | Structured version Visualization version GIF version | ||
| Description: Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| elsingles | ⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3480 | . 2 ⊢ (𝐴 ∈ Singletons → 𝐴 ∈ V) | |
| 2 | vsnex 5404 | . . . 4 ⊢ {𝑥} ∈ V | |
| 3 | eleq1 2822 | . . . 4 ⊢ (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V)) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝐴 = {𝑥} → 𝐴 ∈ V) |
| 5 | 4 | exlimiv 1930 | . 2 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 ∈ V) |
| 6 | eleq1 2822 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ Singletons ↔ 𝐴 ∈ Singletons )) | |
| 7 | eqeq1 2739 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 = {𝑥} ↔ 𝐴 = {𝑥})) | |
| 8 | 7 | exbidv 1921 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 𝑦 = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥})) |
| 9 | df-singles 35881 | . . . . 5 ⊢ Singletons = ran Singleton | |
| 10 | 9 | eleq2i 2826 | . . . 4 ⊢ (𝑦 ∈ Singletons ↔ 𝑦 ∈ ran Singleton) |
| 11 | vex 3463 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 12 | 11 | elrn 5873 | . . . 4 ⊢ (𝑦 ∈ ran Singleton ↔ ∃𝑥 𝑥Singleton𝑦) |
| 13 | vex 3463 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 14 | 13, 11 | brsingle 35935 | . . . . 5 ⊢ (𝑥Singleton𝑦 ↔ 𝑦 = {𝑥}) |
| 15 | 14 | exbii 1848 | . . . 4 ⊢ (∃𝑥 𝑥Singleton𝑦 ↔ ∃𝑥 𝑦 = {𝑥}) |
| 16 | 10, 12, 15 | 3bitri 297 | . . 3 ⊢ (𝑦 ∈ Singletons ↔ ∃𝑥 𝑦 = {𝑥}) |
| 17 | 6, 8, 16 | vtoclbg 3536 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥})) |
| 18 | 1, 5, 17 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 {csn 4601 class class class wbr 5119 ran crn 5655 Singletoncsingle 35856 Singletons csingles 35857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-symdif 4228 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-1st 7988 df-2nd 7989 df-txp 35872 df-singleton 35880 df-singles 35881 |
| This theorem is referenced by: dfsingles2 35939 snelsingles 35940 funpartlem 35960 |
| Copyright terms: Public domain | W3C validator |