![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsingles | Structured version Visualization version GIF version |
Description: Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
Ref | Expression |
---|---|
elsingles | ⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝐴 ∈ Singletons → 𝐴 ∈ V) | |
2 | vsnex 5428 | . . . 4 ⊢ {𝑥} ∈ V | |
3 | eleq1 2821 | . . . 4 ⊢ (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V)) | |
4 | 2, 3 | mpbiri 257 | . . 3 ⊢ (𝐴 = {𝑥} → 𝐴 ∈ V) |
5 | 4 | exlimiv 1933 | . 2 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 ∈ V) |
6 | eleq1 2821 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ Singletons ↔ 𝐴 ∈ Singletons )) | |
7 | eqeq1 2736 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 = {𝑥} ↔ 𝐴 = {𝑥})) | |
8 | 7 | exbidv 1924 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 𝑦 = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥})) |
9 | df-singles 34823 | . . . . 5 ⊢ Singletons = ran Singleton | |
10 | 9 | eleq2i 2825 | . . . 4 ⊢ (𝑦 ∈ Singletons ↔ 𝑦 ∈ ran Singleton) |
11 | vex 3478 | . . . . 5 ⊢ 𝑦 ∈ V | |
12 | 11 | elrn 5891 | . . . 4 ⊢ (𝑦 ∈ ran Singleton ↔ ∃𝑥 𝑥Singleton𝑦) |
13 | vex 3478 | . . . . . 6 ⊢ 𝑥 ∈ V | |
14 | 13, 11 | brsingle 34877 | . . . . 5 ⊢ (𝑥Singleton𝑦 ↔ 𝑦 = {𝑥}) |
15 | 14 | exbii 1850 | . . . 4 ⊢ (∃𝑥 𝑥Singleton𝑦 ↔ ∃𝑥 𝑦 = {𝑥}) |
16 | 10, 12, 15 | 3bitri 296 | . . 3 ⊢ (𝑦 ∈ Singletons ↔ ∃𝑥 𝑦 = {𝑥}) |
17 | 6, 8, 16 | vtoclbg 3559 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥})) |
18 | 1, 5, 17 | pm5.21nii 379 | 1 ⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 {csn 4627 class class class wbr 5147 ran crn 5676 Singletoncsingle 34798 Singletons csingles 34799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-symdif 4241 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-eprel 5579 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 df-1st 7971 df-2nd 7972 df-txp 34814 df-singleton 34822 df-singles 34823 |
This theorem is referenced by: dfsingles2 34881 snelsingles 34882 funpartlem 34902 |
Copyright terms: Public domain | W3C validator |