![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fclim | Structured version Visualization version GIF version |
Description: The limit relation is function-like, and with codomain the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
fclim | ⊢ ⇝ :dom ⇝ ⟶ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climrel 15443 | . . . 4 ⊢ Rel ⇝ | |
2 | climuni 15503 | . . . . . . 7 ⊢ ((𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧) → 𝑦 = 𝑧) | |
3 | 2 | ax-gen 1796 | . . . . . 6 ⊢ ∀𝑧((𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧) → 𝑦 = 𝑧) |
4 | 3 | ax-gen 1796 | . . . . 5 ⊢ ∀𝑦∀𝑧((𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧) → 𝑦 = 𝑧) |
5 | 4 | ax-gen 1796 | . . . 4 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧) → 𝑦 = 𝑧) |
6 | dffun2 6553 | . . . 4 ⊢ (Fun ⇝ ↔ (Rel ⇝ ∧ ∀𝑥∀𝑦∀𝑧((𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧) → 𝑦 = 𝑧))) | |
7 | 1, 5, 6 | mpbir2an 708 | . . 3 ⊢ Fun ⇝ |
8 | funfn 6578 | . . 3 ⊢ (Fun ⇝ ↔ ⇝ Fn dom ⇝ ) | |
9 | 7, 8 | mpbi 229 | . 2 ⊢ ⇝ Fn dom ⇝ |
10 | vex 3477 | . . . . 5 ⊢ 𝑦 ∈ V | |
11 | 10 | elrn 5893 | . . . 4 ⊢ (𝑦 ∈ ran ⇝ ↔ ∃𝑥 𝑥 ⇝ 𝑦) |
12 | climcl 15450 | . . . . 5 ⊢ (𝑥 ⇝ 𝑦 → 𝑦 ∈ ℂ) | |
13 | 12 | exlimiv 1932 | . . . 4 ⊢ (∃𝑥 𝑥 ⇝ 𝑦 → 𝑦 ∈ ℂ) |
14 | 11, 13 | sylbi 216 | . . 3 ⊢ (𝑦 ∈ ran ⇝ → 𝑦 ∈ ℂ) |
15 | 14 | ssriv 3986 | . 2 ⊢ ran ⇝ ⊆ ℂ |
16 | df-f 6547 | . 2 ⊢ ( ⇝ :dom ⇝ ⟶ℂ ↔ ( ⇝ Fn dom ⇝ ∧ ran ⇝ ⊆ ℂ)) | |
17 | 9, 15, 16 | mpbir2an 708 | 1 ⊢ ⇝ :dom ⇝ ⟶ℂ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1780 ∈ wcel 2105 ⊆ wss 3948 class class class wbr 5148 dom cdm 5676 ran crn 5677 Rel wrel 5681 Fun wfun 6537 Fn wfn 6538 ⟶wf 6539 ℂcc 11114 ⇝ cli 15435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 |
This theorem is referenced by: climdm 15505 sum0 15674 sumz 15675 fsumsers 15681 isumclim 15710 isumcl 15714 ntrivcvgfvn0 15852 ntrivcvgtail 15853 zprodn0 15890 iprodclim 15949 iprodcl 15952 |
Copyright terms: Public domain | W3C validator |