Step | Hyp | Ref
| Expression |
1 | | fundcmpsurinj.p |
. . 3
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
2 | | fundcmpsurinj.h |
. . 3
⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
3 | 1, 2 | imasetpreimafvbijlemf 44741 |
. 2
⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃⟶(𝐹 “ 𝐴)) |
4 | 1, 2 | imasetpreimafvbijlemfv1 44743 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝑠 ∈ 𝑃) → ∃𝑏 ∈ 𝑠 (𝐻‘𝑠) = (𝐹‘𝑏)) |
5 | 1, 2 | imasetpreimafvbijlemfv1 44743 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝑟 ∈ 𝑃) → ∃𝑎 ∈ 𝑟 (𝐻‘𝑟) = (𝐹‘𝑎)) |
6 | 4, 5 | anim12dan 618 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) → (∃𝑏 ∈ 𝑠 (𝐻‘𝑠) = (𝐹‘𝑏) ∧ ∃𝑎 ∈ 𝑟 (𝐻‘𝑟) = (𝐹‘𝑎))) |
7 | | eqeq12 2755 |
. . . . . . . . . . . 12
⊢ (((𝐻‘𝑠) = (𝐹‘𝑏) ∧ (𝐻‘𝑟) = (𝐹‘𝑎)) → ((𝐻‘𝑠) = (𝐻‘𝑟) ↔ (𝐹‘𝑏) = (𝐹‘𝑎))) |
8 | 7 | ancoms 458 |
. . . . . . . . . . 11
⊢ (((𝐻‘𝑟) = (𝐹‘𝑎) ∧ (𝐻‘𝑠) = (𝐹‘𝑏)) → ((𝐻‘𝑠) = (𝐻‘𝑟) ↔ (𝐹‘𝑏) = (𝐹‘𝑎))) |
9 | 8 | adantl 481 |
. . . . . . . . . 10
⊢
(((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) ∧ ((𝐻‘𝑟) = (𝐹‘𝑎) ∧ (𝐻‘𝑠) = (𝐹‘𝑏))) → ((𝐻‘𝑠) = (𝐻‘𝑟) ↔ (𝐹‘𝑏) = (𝐹‘𝑎))) |
10 | | simplll 771 |
. . . . . . . . . . . 12
⊢ ((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) → 𝐹 Fn 𝐴) |
11 | | simpllr 772 |
. . . . . . . . . . . 12
⊢ ((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) → (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) |
12 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) → 𝑏 ∈ 𝑠) |
13 | 12 | anim1i 614 |
. . . . . . . . . . . 12
⊢ ((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) → (𝑏 ∈ 𝑠 ∧ 𝑎 ∈ 𝑟)) |
14 | 1 | elsetpreimafveq 44737 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃) ∧ (𝑏 ∈ 𝑠 ∧ 𝑎 ∈ 𝑟)) → ((𝐹‘𝑏) = (𝐹‘𝑎) → 𝑠 = 𝑟)) |
15 | 10, 11, 13, 14 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) → ((𝐹‘𝑏) = (𝐹‘𝑎) → 𝑠 = 𝑟)) |
16 | 15 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) ∧ ((𝐻‘𝑟) = (𝐹‘𝑎) ∧ (𝐻‘𝑠) = (𝐹‘𝑏))) → ((𝐹‘𝑏) = (𝐹‘𝑎) → 𝑠 = 𝑟)) |
17 | 9, 16 | sylbid 239 |
. . . . . . . . 9
⊢
(((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) ∧ ((𝐻‘𝑟) = (𝐹‘𝑎) ∧ (𝐻‘𝑠) = (𝐹‘𝑏))) → ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟)) |
18 | 17 | exp32 420 |
. . . . . . . 8
⊢ ((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) → ((𝐻‘𝑟) = (𝐹‘𝑎) → ((𝐻‘𝑠) = (𝐹‘𝑏) → ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟)))) |
19 | 18 | rexlimdva 3212 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) → (∃𝑎 ∈ 𝑟 (𝐻‘𝑟) = (𝐹‘𝑎) → ((𝐻‘𝑠) = (𝐹‘𝑏) → ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟)))) |
20 | 19 | com23 86 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) → ((𝐻‘𝑠) = (𝐹‘𝑏) → (∃𝑎 ∈ 𝑟 (𝐻‘𝑟) = (𝐹‘𝑎) → ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟)))) |
21 | 20 | rexlimdva 3212 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) → (∃𝑏 ∈ 𝑠 (𝐻‘𝑠) = (𝐹‘𝑏) → (∃𝑎 ∈ 𝑟 (𝐻‘𝑟) = (𝐹‘𝑎) → ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟)))) |
22 | 21 | impd 410 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) → ((∃𝑏 ∈ 𝑠 (𝐻‘𝑠) = (𝐹‘𝑏) ∧ ∃𝑎 ∈ 𝑟 (𝐻‘𝑟) = (𝐹‘𝑎)) → ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟))) |
23 | 6, 22 | mpd 15 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) → ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟)) |
24 | 23 | ralrimivva 3114 |
. 2
⊢ (𝐹 Fn 𝐴 → ∀𝑠 ∈ 𝑃 ∀𝑟 ∈ 𝑃 ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟)) |
25 | | dff13 7109 |
. 2
⊢ (𝐻:𝑃–1-1→(𝐹 “ 𝐴) ↔ (𝐻:𝑃⟶(𝐹 “ 𝐴) ∧ ∀𝑠 ∈ 𝑃 ∀𝑟 ∈ 𝑃 ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟))) |
26 | 3, 24, 25 | sylanbrc 582 |
1
⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃–1-1→(𝐹 “ 𝐴)) |