Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemf1 Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemf1 47278
Description: Lemma for imasetpreimafvbij 47280: the mapping 𝐻 is an injective function into the range of function 𝐹. (Contributed by AV, 9-Mar-2024.) (Revised by AV, 22-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemf1 (𝐹 Fn 𝐴𝐻:𝑃1-1→(𝐹𝐴))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑧,𝑝)

Proof of Theorem imasetpreimafvbijlemf1
Dummy variables 𝑎 𝑏 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fundcmpsurinj.p . . 3 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
2 fundcmpsurinj.h . . 3 𝐻 = (𝑝𝑃 (𝐹𝑝))
31, 2imasetpreimafvbijlemf 47275 . 2 (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
41, 2imasetpreimafvbijlemfv1 47277 . . . . 5 ((𝐹 Fn 𝐴𝑠𝑃) → ∃𝑏𝑠 (𝐻𝑠) = (𝐹𝑏))
51, 2imasetpreimafvbijlemfv1 47277 . . . . 5 ((𝐹 Fn 𝐴𝑟𝑃) → ∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎))
64, 5anim12dan 618 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) → (∃𝑏𝑠 (𝐻𝑠) = (𝐹𝑏) ∧ ∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎)))
7 eqeq12 2757 . . . . . . . . . . . 12 (((𝐻𝑠) = (𝐹𝑏) ∧ (𝐻𝑟) = (𝐹𝑎)) → ((𝐻𝑠) = (𝐻𝑟) ↔ (𝐹𝑏) = (𝐹𝑎)))
87ancoms 458 . . . . . . . . . . 11 (((𝐻𝑟) = (𝐹𝑎) ∧ (𝐻𝑠) = (𝐹𝑏)) → ((𝐻𝑠) = (𝐻𝑟) ↔ (𝐹𝑏) = (𝐹𝑎)))
98adantl 481 . . . . . . . . . 10 (((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) ∧ ((𝐻𝑟) = (𝐹𝑎) ∧ (𝐻𝑠) = (𝐹𝑏))) → ((𝐻𝑠) = (𝐻𝑟) ↔ (𝐹𝑏) = (𝐹𝑎)))
10 simplll 774 . . . . . . . . . . . 12 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → 𝐹 Fn 𝐴)
11 simpllr 775 . . . . . . . . . . . 12 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → (𝑠𝑃𝑟𝑃))
12 simpr 484 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) → 𝑏𝑠)
1312anim1i 614 . . . . . . . . . . . 12 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → (𝑏𝑠𝑎𝑟))
141elsetpreimafveq 47271 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃) ∧ (𝑏𝑠𝑎𝑟)) → ((𝐹𝑏) = (𝐹𝑎) → 𝑠 = 𝑟))
1510, 11, 13, 14syl3anc 1371 . . . . . . . . . . 11 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → ((𝐹𝑏) = (𝐹𝑎) → 𝑠 = 𝑟))
1615adantr 480 . . . . . . . . . 10 (((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) ∧ ((𝐻𝑟) = (𝐹𝑎) ∧ (𝐻𝑠) = (𝐹𝑏))) → ((𝐹𝑏) = (𝐹𝑎) → 𝑠 = 𝑟))
179, 16sylbid 240 . . . . . . . . 9 (((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) ∧ ((𝐻𝑟) = (𝐹𝑎) ∧ (𝐻𝑠) = (𝐹𝑏))) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))
1817exp32 420 . . . . . . . 8 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → ((𝐻𝑟) = (𝐹𝑎) → ((𝐻𝑠) = (𝐹𝑏) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))))
1918rexlimdva 3161 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) → (∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎) → ((𝐻𝑠) = (𝐹𝑏) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))))
2019com23 86 . . . . . 6 (((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) → ((𝐻𝑠) = (𝐹𝑏) → (∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))))
2120rexlimdva 3161 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) → (∃𝑏𝑠 (𝐻𝑠) = (𝐹𝑏) → (∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))))
2221impd 410 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) → ((∃𝑏𝑠 (𝐻𝑠) = (𝐹𝑏) ∧ ∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎)) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟)))
236, 22mpd 15 . . 3 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))
2423ralrimivva 3208 . 2 (𝐹 Fn 𝐴 → ∀𝑠𝑃𝑟𝑃 ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))
25 dff13 7292 . 2 (𝐻:𝑃1-1→(𝐹𝐴) ↔ (𝐻:𝑃⟶(𝐹𝐴) ∧ ∀𝑠𝑃𝑟𝑃 ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟)))
263, 24, 25sylanbrc 582 1 (𝐹 Fn 𝐴𝐻:𝑃1-1→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  1-1wf1 6570  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581
This theorem is referenced by:  imasetpreimafvbij  47280
  Copyright terms: Public domain W3C validator