Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemf1 Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemf1 44856
Description: Lemma for imasetpreimafvbij 44858: the mapping 𝐻 is an injective function into the range of function 𝐹. (Contributed by AV, 9-Mar-2024.) (Revised by AV, 22-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemf1 (𝐹 Fn 𝐴𝐻:𝑃1-1→(𝐹𝐴))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑧,𝑝)

Proof of Theorem imasetpreimafvbijlemf1
Dummy variables 𝑎 𝑏 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fundcmpsurinj.p . . 3 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
2 fundcmpsurinj.h . . 3 𝐻 = (𝑝𝑃 (𝐹𝑝))
31, 2imasetpreimafvbijlemf 44853 . 2 (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
41, 2imasetpreimafvbijlemfv1 44855 . . . . 5 ((𝐹 Fn 𝐴𝑠𝑃) → ∃𝑏𝑠 (𝐻𝑠) = (𝐹𝑏))
51, 2imasetpreimafvbijlemfv1 44855 . . . . 5 ((𝐹 Fn 𝐴𝑟𝑃) → ∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎))
64, 5anim12dan 619 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) → (∃𝑏𝑠 (𝐻𝑠) = (𝐹𝑏) ∧ ∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎)))
7 eqeq12 2755 . . . . . . . . . . . 12 (((𝐻𝑠) = (𝐹𝑏) ∧ (𝐻𝑟) = (𝐹𝑎)) → ((𝐻𝑠) = (𝐻𝑟) ↔ (𝐹𝑏) = (𝐹𝑎)))
87ancoms 459 . . . . . . . . . . 11 (((𝐻𝑟) = (𝐹𝑎) ∧ (𝐻𝑠) = (𝐹𝑏)) → ((𝐻𝑠) = (𝐻𝑟) ↔ (𝐹𝑏) = (𝐹𝑎)))
98adantl 482 . . . . . . . . . 10 (((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) ∧ ((𝐻𝑟) = (𝐹𝑎) ∧ (𝐻𝑠) = (𝐹𝑏))) → ((𝐻𝑠) = (𝐻𝑟) ↔ (𝐹𝑏) = (𝐹𝑎)))
10 simplll 772 . . . . . . . . . . . 12 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → 𝐹 Fn 𝐴)
11 simpllr 773 . . . . . . . . . . . 12 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → (𝑠𝑃𝑟𝑃))
12 simpr 485 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) → 𝑏𝑠)
1312anim1i 615 . . . . . . . . . . . 12 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → (𝑏𝑠𝑎𝑟))
141elsetpreimafveq 44849 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃) ∧ (𝑏𝑠𝑎𝑟)) → ((𝐹𝑏) = (𝐹𝑎) → 𝑠 = 𝑟))
1510, 11, 13, 14syl3anc 1370 . . . . . . . . . . 11 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → ((𝐹𝑏) = (𝐹𝑎) → 𝑠 = 𝑟))
1615adantr 481 . . . . . . . . . 10 (((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) ∧ ((𝐻𝑟) = (𝐹𝑎) ∧ (𝐻𝑠) = (𝐹𝑏))) → ((𝐹𝑏) = (𝐹𝑎) → 𝑠 = 𝑟))
179, 16sylbid 239 . . . . . . . . 9 (((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) ∧ ((𝐻𝑟) = (𝐹𝑎) ∧ (𝐻𝑠) = (𝐹𝑏))) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))
1817exp32 421 . . . . . . . 8 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → ((𝐻𝑟) = (𝐹𝑎) → ((𝐻𝑠) = (𝐹𝑏) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))))
1918rexlimdva 3213 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) → (∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎) → ((𝐻𝑠) = (𝐹𝑏) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))))
2019com23 86 . . . . . 6 (((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) → ((𝐻𝑠) = (𝐹𝑏) → (∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))))
2120rexlimdva 3213 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) → (∃𝑏𝑠 (𝐻𝑠) = (𝐹𝑏) → (∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))))
2221impd 411 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) → ((∃𝑏𝑠 (𝐻𝑠) = (𝐹𝑏) ∧ ∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎)) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟)))
236, 22mpd 15 . . 3 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))
2423ralrimivva 3123 . 2 (𝐹 Fn 𝐴 → ∀𝑠𝑃𝑟𝑃 ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))
25 dff13 7128 . 2 (𝐻:𝑃1-1→(𝐹𝐴) ↔ (𝐻:𝑃⟶(𝐹𝐴) ∧ ∀𝑠𝑃𝑟𝑃 ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟)))
263, 24, 25sylanbrc 583 1 (𝐹 Fn 𝐴𝐻:𝑃1-1→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  {csn 4561   cuni 4839  cmpt 5157  ccnv 5588  cima 5592   Fn wfn 6428  wf 6429  1-1wf1 6430  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fv 6441
This theorem is referenced by:  imasetpreimafvbij  44858
  Copyright terms: Public domain W3C validator