Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemf1 Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemf1 47409
Description: Lemma for imasetpreimafvbij 47411: the mapping 𝐻 is an injective function into the range of function 𝐹. (Contributed by AV, 9-Mar-2024.) (Revised by AV, 22-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemf1 (𝐹 Fn 𝐴𝐻:𝑃1-1→(𝐹𝐴))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑧,𝑝)

Proof of Theorem imasetpreimafvbijlemf1
Dummy variables 𝑎 𝑏 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fundcmpsurinj.p . . 3 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
2 fundcmpsurinj.h . . 3 𝐻 = (𝑝𝑃 (𝐹𝑝))
31, 2imasetpreimafvbijlemf 47406 . 2 (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
41, 2imasetpreimafvbijlemfv1 47408 . . . . 5 ((𝐹 Fn 𝐴𝑠𝑃) → ∃𝑏𝑠 (𝐻𝑠) = (𝐹𝑏))
51, 2imasetpreimafvbijlemfv1 47408 . . . . 5 ((𝐹 Fn 𝐴𝑟𝑃) → ∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎))
64, 5anim12dan 619 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) → (∃𝑏𝑠 (𝐻𝑠) = (𝐹𝑏) ∧ ∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎)))
7 eqeq12 2747 . . . . . . . . . . . 12 (((𝐻𝑠) = (𝐹𝑏) ∧ (𝐻𝑟) = (𝐹𝑎)) → ((𝐻𝑠) = (𝐻𝑟) ↔ (𝐹𝑏) = (𝐹𝑎)))
87ancoms 458 . . . . . . . . . . 11 (((𝐻𝑟) = (𝐹𝑎) ∧ (𝐻𝑠) = (𝐹𝑏)) → ((𝐻𝑠) = (𝐻𝑟) ↔ (𝐹𝑏) = (𝐹𝑎)))
98adantl 481 . . . . . . . . . 10 (((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) ∧ ((𝐻𝑟) = (𝐹𝑎) ∧ (𝐻𝑠) = (𝐹𝑏))) → ((𝐻𝑠) = (𝐻𝑟) ↔ (𝐹𝑏) = (𝐹𝑎)))
10 simplll 774 . . . . . . . . . . . 12 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → 𝐹 Fn 𝐴)
11 simpllr 775 . . . . . . . . . . . 12 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → (𝑠𝑃𝑟𝑃))
12 simpr 484 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) → 𝑏𝑠)
1312anim1i 615 . . . . . . . . . . . 12 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → (𝑏𝑠𝑎𝑟))
141elsetpreimafveq 47402 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃) ∧ (𝑏𝑠𝑎𝑟)) → ((𝐹𝑏) = (𝐹𝑎) → 𝑠 = 𝑟))
1510, 11, 13, 14syl3anc 1373 . . . . . . . . . . 11 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → ((𝐹𝑏) = (𝐹𝑎) → 𝑠 = 𝑟))
1615adantr 480 . . . . . . . . . 10 (((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) ∧ ((𝐻𝑟) = (𝐹𝑎) ∧ (𝐻𝑠) = (𝐹𝑏))) → ((𝐹𝑏) = (𝐹𝑎) → 𝑠 = 𝑟))
179, 16sylbid 240 . . . . . . . . 9 (((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) ∧ ((𝐻𝑟) = (𝐹𝑎) ∧ (𝐻𝑠) = (𝐹𝑏))) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))
1817exp32 420 . . . . . . . 8 ((((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) ∧ 𝑎𝑟) → ((𝐻𝑟) = (𝐹𝑎) → ((𝐻𝑠) = (𝐹𝑏) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))))
1918rexlimdva 3135 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) → (∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎) → ((𝐻𝑠) = (𝐹𝑏) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))))
2019com23 86 . . . . . 6 (((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) ∧ 𝑏𝑠) → ((𝐻𝑠) = (𝐹𝑏) → (∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))))
2120rexlimdva 3135 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) → (∃𝑏𝑠 (𝐻𝑠) = (𝐹𝑏) → (∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))))
2221impd 410 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) → ((∃𝑏𝑠 (𝐻𝑠) = (𝐹𝑏) ∧ ∃𝑎𝑟 (𝐻𝑟) = (𝐹𝑎)) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟)))
236, 22mpd 15 . . 3 ((𝐹 Fn 𝐴 ∧ (𝑠𝑃𝑟𝑃)) → ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))
2423ralrimivva 3181 . 2 (𝐹 Fn 𝐴 → ∀𝑠𝑃𝑟𝑃 ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟))
25 dff13 7232 . 2 (𝐻:𝑃1-1→(𝐹𝐴) ↔ (𝐻:𝑃⟶(𝐹𝐴) ∧ ∀𝑠𝑃𝑟𝑃 ((𝐻𝑠) = (𝐻𝑟) → 𝑠 = 𝑟)))
263, 24, 25sylanbrc 583 1 (𝐹 Fn 𝐴𝐻:𝑃1-1→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  {csn 4592   cuni 4874  cmpt 5191  ccnv 5640  cima 5644   Fn wfn 6509  wf 6510  1-1wf1 6511  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fv 6522
This theorem is referenced by:  imasetpreimafvbij  47411
  Copyright terms: Public domain W3C validator