| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fundcmpsurinj.p | . . 3
⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | 
| 2 |  | fundcmpsurinj.h | . . 3
⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | 
| 3 | 1, 2 | imasetpreimafvbijlemf 47388 | . 2
⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃⟶(𝐹 “ 𝐴)) | 
| 4 | 1, 2 | imasetpreimafvbijlemfv1 47390 | . . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝑠 ∈ 𝑃) → ∃𝑏 ∈ 𝑠 (𝐻‘𝑠) = (𝐹‘𝑏)) | 
| 5 | 1, 2 | imasetpreimafvbijlemfv1 47390 | . . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝑟 ∈ 𝑃) → ∃𝑎 ∈ 𝑟 (𝐻‘𝑟) = (𝐹‘𝑎)) | 
| 6 | 4, 5 | anim12dan 619 | . . . 4
⊢ ((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) → (∃𝑏 ∈ 𝑠 (𝐻‘𝑠) = (𝐹‘𝑏) ∧ ∃𝑎 ∈ 𝑟 (𝐻‘𝑟) = (𝐹‘𝑎))) | 
| 7 |  | eqeq12 2754 | . . . . . . . . . . . 12
⊢ (((𝐻‘𝑠) = (𝐹‘𝑏) ∧ (𝐻‘𝑟) = (𝐹‘𝑎)) → ((𝐻‘𝑠) = (𝐻‘𝑟) ↔ (𝐹‘𝑏) = (𝐹‘𝑎))) | 
| 8 | 7 | ancoms 458 | . . . . . . . . . . 11
⊢ (((𝐻‘𝑟) = (𝐹‘𝑎) ∧ (𝐻‘𝑠) = (𝐹‘𝑏)) → ((𝐻‘𝑠) = (𝐻‘𝑟) ↔ (𝐹‘𝑏) = (𝐹‘𝑎))) | 
| 9 | 8 | adantl 481 | . . . . . . . . . 10
⊢
(((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) ∧ ((𝐻‘𝑟) = (𝐹‘𝑎) ∧ (𝐻‘𝑠) = (𝐹‘𝑏))) → ((𝐻‘𝑠) = (𝐻‘𝑟) ↔ (𝐹‘𝑏) = (𝐹‘𝑎))) | 
| 10 |  | simplll 775 | . . . . . . . . . . . 12
⊢ ((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) → 𝐹 Fn 𝐴) | 
| 11 |  | simpllr 776 | . . . . . . . . . . . 12
⊢ ((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) → (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) | 
| 12 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ (((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) → 𝑏 ∈ 𝑠) | 
| 13 | 12 | anim1i 615 | . . . . . . . . . . . 12
⊢ ((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) → (𝑏 ∈ 𝑠 ∧ 𝑎 ∈ 𝑟)) | 
| 14 | 1 | elsetpreimafveq 47384 | . . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃) ∧ (𝑏 ∈ 𝑠 ∧ 𝑎 ∈ 𝑟)) → ((𝐹‘𝑏) = (𝐹‘𝑎) → 𝑠 = 𝑟)) | 
| 15 | 10, 11, 13, 14 | syl3anc 1373 | . . . . . . . . . . 11
⊢ ((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) → ((𝐹‘𝑏) = (𝐹‘𝑎) → 𝑠 = 𝑟)) | 
| 16 | 15 | adantr 480 | . . . . . . . . . 10
⊢
(((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) ∧ ((𝐻‘𝑟) = (𝐹‘𝑎) ∧ (𝐻‘𝑠) = (𝐹‘𝑏))) → ((𝐹‘𝑏) = (𝐹‘𝑎) → 𝑠 = 𝑟)) | 
| 17 | 9, 16 | sylbid 240 | . . . . . . . . 9
⊢
(((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) ∧ ((𝐻‘𝑟) = (𝐹‘𝑎) ∧ (𝐻‘𝑠) = (𝐹‘𝑏))) → ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟)) | 
| 18 | 17 | exp32 420 | . . . . . . . 8
⊢ ((((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) ∧ 𝑎 ∈ 𝑟) → ((𝐻‘𝑟) = (𝐹‘𝑎) → ((𝐻‘𝑠) = (𝐹‘𝑏) → ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟)))) | 
| 19 | 18 | rexlimdva 3155 | . . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) → (∃𝑎 ∈ 𝑟 (𝐻‘𝑟) = (𝐹‘𝑎) → ((𝐻‘𝑠) = (𝐹‘𝑏) → ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟)))) | 
| 20 | 19 | com23 86 | . . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) ∧ 𝑏 ∈ 𝑠) → ((𝐻‘𝑠) = (𝐹‘𝑏) → (∃𝑎 ∈ 𝑟 (𝐻‘𝑟) = (𝐹‘𝑎) → ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟)))) | 
| 21 | 20 | rexlimdva 3155 | . . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) → (∃𝑏 ∈ 𝑠 (𝐻‘𝑠) = (𝐹‘𝑏) → (∃𝑎 ∈ 𝑟 (𝐻‘𝑟) = (𝐹‘𝑎) → ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟)))) | 
| 22 | 21 | impd 410 | . . . 4
⊢ ((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) → ((∃𝑏 ∈ 𝑠 (𝐻‘𝑠) = (𝐹‘𝑏) ∧ ∃𝑎 ∈ 𝑟 (𝐻‘𝑟) = (𝐹‘𝑎)) → ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟))) | 
| 23 | 6, 22 | mpd 15 | . . 3
⊢ ((𝐹 Fn 𝐴 ∧ (𝑠 ∈ 𝑃 ∧ 𝑟 ∈ 𝑃)) → ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟)) | 
| 24 | 23 | ralrimivva 3202 | . 2
⊢ (𝐹 Fn 𝐴 → ∀𝑠 ∈ 𝑃 ∀𝑟 ∈ 𝑃 ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟)) | 
| 25 |  | dff13 7275 | . 2
⊢ (𝐻:𝑃–1-1→(𝐹 “ 𝐴) ↔ (𝐻:𝑃⟶(𝐹 “ 𝐴) ∧ ∀𝑠 ∈ 𝑃 ∀𝑟 ∈ 𝑃 ((𝐻‘𝑠) = (𝐻‘𝑟) → 𝑠 = 𝑟))) | 
| 26 | 3, 24, 25 | sylanbrc 583 | 1
⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃–1-1→(𝐹 “ 𝐴)) |