![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxp7 | Structured version Visualization version GIF version |
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7913. (Contributed by NM, 19-Aug-2006.) |
Ref | Expression |
---|---|
elxp7 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp6 8009 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
2 | fvex 6905 | . . . . 5 ⊢ (1st ‘𝐴) ∈ V | |
3 | fvex 6905 | . . . . 5 ⊢ (2nd ‘𝐴) ∈ V | |
4 | 2, 3 | pm3.2i 472 | . . . 4 ⊢ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) |
5 | elxp6 8009 | . . . 4 ⊢ (𝐴 ∈ (V × V) ↔ (𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∧ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V))) | |
6 | 4, 5 | mpbiran2 709 | . . 3 ⊢ (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) |
7 | 6 | anbi1i 625 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) ↔ (𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
8 | 1, 7 | bitr4i 278 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ⟨cop 4635 × cxp 5675 ‘cfv 6544 1st c1st 7973 2nd c2nd 7974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-1st 7975 df-2nd 7976 |
This theorem is referenced by: xp2 8012 unielxp 8013 1stconst 8086 2ndconst 8087 fparlem1 8098 fparlem2 8099 infxpenlem 10008 1stpreimas 31927 1stpreima 31928 2ndpreima 31929 f1od2 31946 xpinpreima2 32887 tpr2rico 32892 sxbrsigalem0 33270 dya2iocnrect 33280 elxp8 36252 pellex 41573 elpglem3 47758 |
Copyright terms: Public domain | W3C validator |