MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp7 Structured version   Visualization version   GIF version

Theorem elxp7 7718
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7618. (Contributed by NM, 19-Aug-2006.)
Assertion
Ref Expression
elxp7 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))

Proof of Theorem elxp7
StepHypRef Expression
1 elxp6 7717 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
2 fvex 6679 . . . . 5 (1st𝐴) ∈ V
3 fvex 6679 . . . . 5 (2nd𝐴) ∈ V
42, 3pm3.2i 471 . . . 4 ((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V)
5 elxp6 7717 . . . 4 (𝐴 ∈ (V × V) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V)))
64, 5mpbiran2 706 . . 3 (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
76anbi1i 623 . 2 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
81, 7bitr4i 279 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1530  wcel 2107  Vcvv 3499  cop 4569   × cxp 5551  cfv 6351  1st c1st 7681  2nd c2nd 7682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-iota 6311  df-fun 6353  df-fv 6359  df-1st 7683  df-2nd 7684
This theorem is referenced by:  xp2  7720  unielxp  7721  1stconst  7789  2ndconst  7790  fparlem1  7801  fparlem2  7802  infxpenlem  9431  1stpreimas  30356  1stpreima  30357  2ndpreima  30358  f1od2  30372  xpinpreima2  31038  tpr2rico  31043  sxbrsigalem0  31417  dya2iocnrect  31427  elxp8  34523  pellex  39299  elpglem3  44649
  Copyright terms: Public domain W3C validator