MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp7 Structured version   Visualization version   GIF version

Theorem elxp7 8003
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7906. (Contributed by NM, 19-Aug-2006.)
Assertion
Ref Expression
elxp7 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))

Proof of Theorem elxp7
StepHypRef Expression
1 elxp6 8002 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
2 fvex 6894 . . . . 5 (1st𝐴) ∈ V
3 fvex 6894 . . . . 5 (2nd𝐴) ∈ V
42, 3pm3.2i 470 . . . 4 ((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V)
5 elxp6 8002 . . . 4 (𝐴 ∈ (V × V) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V)))
64, 5mpbiran2 707 . . 3 (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
76anbi1i 623 . 2 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
81, 7bitr4i 278 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  cop 4626   × cxp 5664  cfv 6533  1st c1st 7966  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-iota 6485  df-fun 6535  df-fv 6541  df-1st 7968  df-2nd 7969
This theorem is referenced by:  xp2  8005  unielxp  8006  1stconst  8080  2ndconst  8081  fparlem1  8092  fparlem2  8093  infxpenlem  10004  1stpreimas  32396  1stpreima  32397  2ndpreima  32398  f1od2  32415  xpinpreima2  33376  tpr2rico  33381  sxbrsigalem0  33759  dya2iocnrect  33769  elxp8  36742  pellex  42062  elpglem3  47946
  Copyright terms: Public domain W3C validator