| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxp7 | Structured version Visualization version GIF version | ||
| Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7852. (Contributed by NM, 19-Aug-2006.) |
| Ref | Expression |
|---|---|
| elxp7 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 7955 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
| 2 | fvex 6835 | . . . . 5 ⊢ (1st ‘𝐴) ∈ V | |
| 3 | fvex 6835 | . . . . 5 ⊢ (2nd ‘𝐴) ∈ V | |
| 4 | 2, 3 | pm3.2i 470 | . . . 4 ⊢ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) |
| 5 | elxp6 7955 | . . . 4 ⊢ (𝐴 ∈ (V × V) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V))) | |
| 6 | 4, 5 | mpbiran2 710 | . . 3 ⊢ (𝐴 ∈ (V × V) ↔ 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 7 | 6 | anbi1i 624 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
| 8 | 1, 7 | bitr4i 278 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 × cxp 5612 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: xp2 7958 unielxp 7959 1stconst 8030 2ndconst 8031 fparlem1 8042 fparlem2 8043 infxpenlem 9904 1stpreimas 32687 1stpreima 32688 2ndpreima 32689 f1od2 32702 xpinpreima2 33920 tpr2rico 33925 sxbrsigalem0 34284 dya2iocnrect 34294 elxp8 37413 pellex 42876 elpglem3 49753 |
| Copyright terms: Public domain | W3C validator |