MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2snOLD Structured version   Visualization version   GIF version

Theorem en2snOLD 8786
Description: Obsolete version of en2sn 8785 as of 25-Sep-2024. (Contributed by NM, 9-Nov-2003.) Avoid ax-pow 5283. (Revised by BTernaryTau, 31-Jul-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en2snOLD ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})

Proof of Theorem en2snOLD
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 snex 5349 . . 3 {⟨𝐴, 𝐵⟩} ∈ V
2 f1osng 6740 . . 3 ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
3 f1oeq1 6688 . . . 4 (𝑓 = {⟨𝐴, 𝐵⟩} → (𝑓:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}))
43spcegv 3526 . . 3 ({⟨𝐴, 𝐵⟩} ∈ V → ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}))
51, 2, 4mpsyl 68 . 2 ((𝐴𝐶𝐵𝐷) → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})
6 bren 8701 . 2 ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})
75, 6sylibr 233 1 ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  wcel 2108  Vcvv 3422  {csn 4558  cop 4564   class class class wbr 5070  1-1-ontowf1o 6417  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-en 8692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator