![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en2snOLD | Structured version Visualization version GIF version |
Description: Obsolete version of en2sn 9072 as of 25-Sep-2024. (Contributed by NM, 9-Nov-2003.) Avoid ax-pow 5369. (Revised by BTernaryTau, 31-Jul-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
en2snOLD | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5437 | . . 3 ⊢ {⟨𝐴, 𝐵⟩} ∈ V | |
2 | f1osng 6885 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}) | |
3 | f1oeq1 6832 | . . . 4 ⊢ (𝑓 = {⟨𝐴, 𝐵⟩} → (𝑓:{𝐴}–1-1-onto→{𝐵} ↔ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})) | |
4 | 3 | spcegv 3586 | . . 3 ⊢ ({⟨𝐴, 𝐵⟩} ∈ V → ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵})) |
5 | 1, 2, 4 | mpsyl 68 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}) |
6 | bren 8980 | . 2 ⊢ ({𝐴} ≈ {𝐵} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{𝐵}) | |
7 | 5, 6 | sylibr 233 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∃wex 1773 ∈ wcel 2098 Vcvv 3473 {csn 4632 ⟨cop 4638 class class class wbr 5152 –1-1-onto→wf1o 6552 ≈ cen 8967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2529 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-en 8971 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |