MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2snOLDOLD Structured version   Visualization version   GIF version

Theorem en2snOLDOLD 8994
Description: Obsolete version of en2sn 8992 as of 31-Jul-2024. (Contributed by NM, 9-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en2snOLDOLD ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})

Proof of Theorem en2snOLDOLD
StepHypRef Expression
1 ensn1g 8970 . 2 (𝐴𝐶 → {𝐴} ≈ 1o)
2 ensn1g 8970 . . 3 (𝐵𝐷 → {𝐵} ≈ 1o)
32ensymd 8952 . 2 (𝐵𝐷 → 1o ≈ {𝐵})
4 entr 8953 . 2 (({𝐴} ≈ 1o ∧ 1o ≈ {𝐵}) → {𝐴} ≈ {𝐵})
51, 3, 4syl2an 597 1 ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  {csn 4591   class class class wbr 5110  1oc1o 8410  cen 8887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6328  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-1o 8417  df-er 8655  df-en 8891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator