MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2snOLDOLD Structured version   Visualization version   GIF version

Theorem en2snOLDOLD 8833
Description: Obsolete version of en2sn 8831 as of 31-Jul-2024. (Contributed by NM, 9-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en2snOLDOLD ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})

Proof of Theorem en2snOLDOLD
StepHypRef Expression
1 ensn1g 8809 . 2 (𝐴𝐶 → {𝐴} ≈ 1o)
2 ensn1g 8809 . . 3 (𝐵𝐷 → {𝐵} ≈ 1o)
32ensymd 8791 . 2 (𝐵𝐷 → 1o ≈ {𝐵})
4 entr 8792 . 2 (({𝐴} ≈ 1o ∧ 1o ≈ {𝐵}) → {𝐴} ≈ {𝐵})
51, 3, 4syl2an 596 1 ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  {csn 4561   class class class wbr 5074  1oc1o 8290  cen 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-suc 6272  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-1o 8297  df-er 8498  df-en 8734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator