MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2snOLDOLD Structured version   Visualization version   GIF version

Theorem en2snOLDOLD 9057
Description: Obsolete version of en2sn 9055 as of 31-Jul-2024. (Contributed by NM, 9-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en2snOLDOLD ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})

Proof of Theorem en2snOLDOLD
StepHypRef Expression
1 ensn1g 9033 . 2 (𝐴𝐶 → {𝐴} ≈ 1o)
2 ensn1g 9033 . . 3 (𝐵𝐷 → {𝐵} ≈ 1o)
32ensymd 9015 . 2 (𝐵𝐷 → 1o ≈ {𝐵})
4 entr 9016 . 2 (({𝐴} ≈ 1o ∧ 1o ≈ {𝐵}) → {𝐴} ≈ {𝐵})
51, 3, 4syl2an 595 1 ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  {csn 4624   class class class wbr 5142  1oc1o 8471  cen 8950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-suc 6369  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-1o 8478  df-er 8716  df-en 8954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator