Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpmono Structured version   Visualization version   GIF version

Theorem esumpmono 31566
 Description: The partial sums in an extended sum form a monotonic sequence. (Contributed by Thierry Arnoux, 31-Aug-2017.)
Hypotheses
Ref Expression
esumpmono.1 (𝜑𝑀 ∈ ℕ)
esumpmono.2 (𝜑𝑁 ∈ (ℤ𝑀))
esumpmono.3 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
Assertion
Ref Expression
esumpmono (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑁)𝐴)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem esumpmono
StepHypRef Expression
1 iccssxr 12862 . . . . 5 (0[,]+∞) ⊆ ℝ*
2 ovexd 7185 . . . . . 6 (𝜑 → (1...𝑀) ∈ V)
3 elfznn 12985 . . . . . . . 8 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
4 icossicc 12868 . . . . . . . . 9 (0[,)+∞) ⊆ (0[,]+∞)
5 esumpmono.3 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
64, 5sseldi 3890 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
73, 6sylan2 595 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑀)) → 𝐴 ∈ (0[,]+∞))
87ralrimiva 3113 . . . . . 6 (𝜑 → ∀𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞))
9 nfcv 2919 . . . . . . 7 𝑘(1...𝑀)
109esumcl 31517 . . . . . 6 (((1...𝑀) ∈ V ∧ ∀𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞))
112, 8, 10syl2anc 587 . . . . 5 (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞))
121, 11sseldi 3890 . . . 4 (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ*)
1312xrleidd 12586 . . 3 (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴)
14 ovexd 7185 . . . . 5 (𝜑 → ((𝑀 + 1)...𝑁) ∈ V)
15 esumpmono.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
1615adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℕ)
17 peano2nn 11686 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ)
18 nnuz 12321 . . . . . . . . . . 11 ℕ = (ℤ‘1)
1917, 18eleqtrdi 2862 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ (ℤ‘1))
20 fzss1 12995 . . . . . . . . . 10 ((𝑀 + 1) ∈ (ℤ‘1) → ((𝑀 + 1)...𝑁) ⊆ (1...𝑁))
2116, 19, 203syl 18 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((𝑀 + 1)...𝑁) ⊆ (1...𝑁))
22 simpr 488 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ((𝑀 + 1)...𝑁))
2321, 22sseldd 3893 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (1...𝑁))
24 elfznn 12985 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
2523, 24syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℕ)
2625, 6syldan 594 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ (0[,]+∞))
2726ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞))
28 nfcv 2919 . . . . . 6 𝑘((𝑀 + 1)...𝑁)
2928esumcl 31517 . . . . 5 ((((𝑀 + 1)...𝑁) ∈ V ∧ ∀𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞))
3014, 27, 29syl2anc 587 . . . 4 (𝜑 → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞))
31 elxrge0 12889 . . . . 5 *𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞) ↔ (Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ* ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
3231simprbi 500 . . . 4 *𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞) → 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)
3330, 32syl 17 . . 3 (𝜑 → 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)
34 0xr 10726 . . . . 5 0 ∈ ℝ*
3534a1i 11 . . . 4 (𝜑 → 0 ∈ ℝ*)
361, 30sseldi 3890 . . . 4 (𝜑 → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ*)
37 xle2add 12693 . . . 4 (((Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* ∧ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ*)) → ((Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴 ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)))
3812, 35, 12, 36, 37syl22anc 837 . . 3 (𝜑 → ((Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴 ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)))
3913, 33, 38mp2and 698 . 2 (𝜑 → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
40 xaddid1 12675 . . . 4 *𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) = Σ*𝑘 ∈ (1...𝑀)𝐴)
4112, 40syl 17 . . 3 (𝜑 → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) = Σ*𝑘 ∈ (1...𝑀)𝐴)
4241eqcomd 2764 . 2 (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0))
4315, 18eleqtrdi 2862 . . . . 5 (𝜑𝑀 ∈ (ℤ‘1))
44 esumpmono.2 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
45 eluzfz 12951 . . . . 5 ((𝑀 ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ (1...𝑁))
4643, 44, 45syl2anc 587 . . . 4 (𝜑𝑀 ∈ (1...𝑁))
47 fzsplit 12982 . . . 4 (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
48 esumeq1 31521 . . . 4 ((1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)) → Σ*𝑘 ∈ (1...𝑁)𝐴 = Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴)
4946, 47, 483syl 18 . . 3 (𝜑 → Σ*𝑘 ∈ (1...𝑁)𝐴 = Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴)
50 nfv 1915 . . . 4 𝑘𝜑
51 nnre 11681 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
5251ltp1d 11608 . . . . 5 (𝑀 ∈ ℕ → 𝑀 < (𝑀 + 1))
53 fzdisj 12983 . . . . 5 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
5415, 52, 533syl 18 . . . 4 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
5550, 9, 28, 2, 14, 54, 7, 26esumsplit 31540 . . 3 (𝜑 → Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
5649, 55eqtrd 2793 . 2 (𝜑 → Σ*𝑘 ∈ (1...𝑁)𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
5739, 42, 563brtr4d 5064 1 (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑁)𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070  Vcvv 3409   ∪ cun 3856   ∩ cin 3857   ⊆ wss 3858  ∅c0 4225   class class class wbr 5032  ‘cfv 6335  (class class class)co 7150  0cc0 10575  1c1 10576   + caddc 10578  +∞cpnf 10710  ℝ*cxr 10712   < clt 10713   ≤ cle 10714  ℕcn 11674  ℤ≥cuz 12282   +𝑒 cxad 12546  [,)cico 12781  [,]cicc 12782  ...cfz 12939  Σ*cesum 31514 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-pi 15474  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-ordt 16832  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-ps 17876  df-tsr 17877  df-plusf 17917  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-mhm 18022  df-submnd 18023  df-grp 18172  df-minusg 18173  df-sbg 18174  df-mulg 18292  df-subg 18343  df-cntz 18514  df-cmn 18975  df-abl 18976  df-mgp 19308  df-ur 19320  df-ring 19367  df-cring 19368  df-subrg 19601  df-abv 19656  df-lmod 19704  df-scaf 19705  df-sra 20012  df-rgmod 20013  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-tmd 22772  df-tgp 22773  df-tsms 22827  df-trg 22860  df-xms 23022  df-ms 23023  df-tms 23024  df-nm 23284  df-ngp 23285  df-nrg 23287  df-nlm 23288  df-ii 23578  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247  df-esum 31515 This theorem is referenced by:  esumcvg  31573
 Copyright terms: Public domain W3C validator