| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpmono | Structured version Visualization version GIF version | ||
| Description: The partial sums in an extended sum form a monotonic sequence. (Contributed by Thierry Arnoux, 31-Aug-2017.) |
| Ref | Expression |
|---|---|
| esumpmono.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| esumpmono.2 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| esumpmono.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) |
| Ref | Expression |
|---|---|
| esumpmono | ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑁)𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr 13391 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 2 | ovexd 7422 | . . . . . 6 ⊢ (𝜑 → (1...𝑀) ∈ V) | |
| 3 | elfznn 13514 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ) | |
| 4 | icossicc 13397 | . . . . . . . . 9 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
| 5 | esumpmono.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) | |
| 6 | 4, 5 | sselid 3944 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) |
| 7 | 3, 6 | sylan2 593 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 𝐴 ∈ (0[,]+∞)) |
| 8 | 7 | ralrimiva 3125 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) |
| 9 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑘(1...𝑀) | |
| 10 | 9 | esumcl 34020 | . . . . . 6 ⊢ (((1...𝑀) ∈ V ∧ ∀𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) |
| 11 | 2, 8, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) |
| 12 | 1, 11 | sselid 3944 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ*) |
| 13 | 12 | xrleidd 13112 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴) |
| 14 | ovexd 7422 | . . . . 5 ⊢ (𝜑 → ((𝑀 + 1)...𝑁) ∈ V) | |
| 15 | esumpmono.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 16 | 15 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℕ) |
| 17 | peano2nn 12198 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ) | |
| 18 | nnuz 12836 | . . . . . . . . . . 11 ⊢ ℕ = (ℤ≥‘1) | |
| 19 | 17, 18 | eleqtrdi 2838 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ → (𝑀 + 1) ∈ (ℤ≥‘1)) |
| 20 | fzss1 13524 | . . . . . . . . . 10 ⊢ ((𝑀 + 1) ∈ (ℤ≥‘1) → ((𝑀 + 1)...𝑁) ⊆ (1...𝑁)) | |
| 21 | 16, 19, 20 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((𝑀 + 1)...𝑁) ⊆ (1...𝑁)) |
| 22 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ((𝑀 + 1)...𝑁)) | |
| 23 | 21, 22 | sseldd 3947 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (1...𝑁)) |
| 24 | elfznn 13514 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
| 25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℕ) |
| 26 | 25, 6 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ (0[,]+∞)) |
| 27 | 26 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) |
| 28 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘((𝑀 + 1)...𝑁) | |
| 29 | 28 | esumcl 34020 | . . . . 5 ⊢ ((((𝑀 + 1)...𝑁) ∈ V ∧ ∀𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) |
| 30 | 14, 27, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) |
| 31 | elxrge0 13418 | . . . . 5 ⊢ (Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞) ↔ (Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ* ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) | |
| 32 | 31 | simprbi 496 | . . . 4 ⊢ (Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞) → 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) |
| 33 | 30, 32 | syl 17 | . . 3 ⊢ (𝜑 → 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) |
| 34 | 0xr 11221 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 35 | 34 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 36 | 1, 30 | sselid 3944 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ*) |
| 37 | xle2add 13219 | . . . 4 ⊢ (((Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* ∧ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ*)) → ((Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴 ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))) | |
| 38 | 12, 35, 12, 36, 37 | syl22anc 838 | . . 3 ⊢ (𝜑 → ((Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴 ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))) |
| 39 | 13, 33, 38 | mp2and 699 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
| 40 | xaddrid 13201 | . . . 4 ⊢ (Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) = Σ*𝑘 ∈ (1...𝑀)𝐴) | |
| 41 | 12, 40 | syl 17 | . . 3 ⊢ (𝜑 → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) = Σ*𝑘 ∈ (1...𝑀)𝐴) |
| 42 | 41 | eqcomd 2735 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0)) |
| 43 | 15, 18 | eleqtrdi 2838 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘1)) |
| 44 | esumpmono.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 45 | eluzfz 13480 | . . . . 5 ⊢ ((𝑀 ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ (1...𝑁)) | |
| 46 | 43, 44, 45 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
| 47 | fzsplit 13511 | . . . 4 ⊢ (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) | |
| 48 | esumeq1 34024 | . . . 4 ⊢ ((1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)) → Σ*𝑘 ∈ (1...𝑁)𝐴 = Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴) | |
| 49 | 46, 47, 48 | 3syl 18 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑁)𝐴 = Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴) |
| 50 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 51 | nnre 12193 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
| 52 | 51 | ltp1d 12113 | . . . . 5 ⊢ (𝑀 ∈ ℕ → 𝑀 < (𝑀 + 1)) |
| 53 | fzdisj 13512 | . . . . 5 ⊢ (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) | |
| 54 | 15, 52, 53 | 3syl 18 | . . . 4 ⊢ (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
| 55 | 50, 9, 28, 2, 14, 54, 7, 26 | esumsplit 34043 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
| 56 | 49, 55 | eqtrd 2764 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑁)𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
| 57 | 39, 42, 56 | 3brtr4d 5139 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑁)𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∪ cun 3912 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 ℕcn 12186 ℤ≥cuz 12793 +𝑒 cxad 13070 [,)cico 13308 [,]cicc 13309 ...cfz 13468 Σ*cesum 34017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-ordt 17464 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-ps 18525 df-tsr 18526 df-plusf 18566 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-subrng 20455 df-subrg 20479 df-abv 20718 df-lmod 20768 df-scaf 20769 df-sra 21080 df-rgmod 21081 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-tmd 23959 df-tgp 23960 df-tsms 24014 df-trg 24047 df-xms 24208 df-ms 24209 df-tms 24210 df-nm 24470 df-ngp 24471 df-nrg 24473 df-nlm 24474 df-ii 24770 df-cncf 24771 df-limc 25767 df-dv 25768 df-log 26465 df-esum 34018 |
| This theorem is referenced by: esumcvg 34076 |
| Copyright terms: Public domain | W3C validator |