Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpmono Structured version   Visualization version   GIF version

Theorem esumpmono 31566
Description: The partial sums in an extended sum form a monotonic sequence. (Contributed by Thierry Arnoux, 31-Aug-2017.)
Hypotheses
Ref Expression
esumpmono.1 (𝜑𝑀 ∈ ℕ)
esumpmono.2 (𝜑𝑁 ∈ (ℤ𝑀))
esumpmono.3 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
Assertion
Ref Expression
esumpmono (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑁)𝐴)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem esumpmono
StepHypRef Expression
1 iccssxr 12862 . . . . 5 (0[,]+∞) ⊆ ℝ*
2 ovexd 7185 . . . . . 6 (𝜑 → (1...𝑀) ∈ V)
3 elfznn 12985 . . . . . . . 8 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
4 icossicc 12868 . . . . . . . . 9 (0[,)+∞) ⊆ (0[,]+∞)
5 esumpmono.3 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
64, 5sseldi 3890 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
73, 6sylan2 595 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑀)) → 𝐴 ∈ (0[,]+∞))
87ralrimiva 3113 . . . . . 6 (𝜑 → ∀𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞))
9 nfcv 2919 . . . . . . 7 𝑘(1...𝑀)
109esumcl 31517 . . . . . 6 (((1...𝑀) ∈ V ∧ ∀𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞))
112, 8, 10syl2anc 587 . . . . 5 (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞))
121, 11sseldi 3890 . . . 4 (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ*)
1312xrleidd 12586 . . 3 (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴)
14 ovexd 7185 . . . . 5 (𝜑 → ((𝑀 + 1)...𝑁) ∈ V)
15 esumpmono.1 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
1615adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℕ)
17 peano2nn 11686 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ)
18 nnuz 12321 . . . . . . . . . . 11 ℕ = (ℤ‘1)
1917, 18eleqtrdi 2862 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ (ℤ‘1))
20 fzss1 12995 . . . . . . . . . 10 ((𝑀 + 1) ∈ (ℤ‘1) → ((𝑀 + 1)...𝑁) ⊆ (1...𝑁))
2116, 19, 203syl 18 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((𝑀 + 1)...𝑁) ⊆ (1...𝑁))
22 simpr 488 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ((𝑀 + 1)...𝑁))
2321, 22sseldd 3893 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (1...𝑁))
24 elfznn 12985 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
2523, 24syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℕ)
2625, 6syldan 594 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ (0[,]+∞))
2726ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞))
28 nfcv 2919 . . . . . 6 𝑘((𝑀 + 1)...𝑁)
2928esumcl 31517 . . . . 5 ((((𝑀 + 1)...𝑁) ∈ V ∧ ∀𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞))
3014, 27, 29syl2anc 587 . . . 4 (𝜑 → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞))
31 elxrge0 12889 . . . . 5 *𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞) ↔ (Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ* ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
3231simprbi 500 . . . 4 *𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞) → 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)
3330, 32syl 17 . . 3 (𝜑 → 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)
34 0xr 10726 . . . . 5 0 ∈ ℝ*
3534a1i 11 . . . 4 (𝜑 → 0 ∈ ℝ*)
361, 30sseldi 3890 . . . 4 (𝜑 → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ*)
37 xle2add 12693 . . . 4 (((Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* ∧ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ*)) → ((Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴 ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)))
3812, 35, 12, 36, 37syl22anc 837 . . 3 (𝜑 → ((Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴 ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)))
3913, 33, 38mp2and 698 . 2 (𝜑 → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
40 xaddid1 12675 . . . 4 *𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) = Σ*𝑘 ∈ (1...𝑀)𝐴)
4112, 40syl 17 . . 3 (𝜑 → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) = Σ*𝑘 ∈ (1...𝑀)𝐴)
4241eqcomd 2764 . 2 (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0))
4315, 18eleqtrdi 2862 . . . . 5 (𝜑𝑀 ∈ (ℤ‘1))
44 esumpmono.2 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
45 eluzfz 12951 . . . . 5 ((𝑀 ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ (1...𝑁))
4643, 44, 45syl2anc 587 . . . 4 (𝜑𝑀 ∈ (1...𝑁))
47 fzsplit 12982 . . . 4 (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
48 esumeq1 31521 . . . 4 ((1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)) → Σ*𝑘 ∈ (1...𝑁)𝐴 = Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴)
4946, 47, 483syl 18 . . 3 (𝜑 → Σ*𝑘 ∈ (1...𝑁)𝐴 = Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴)
50 nfv 1915 . . . 4 𝑘𝜑
51 nnre 11681 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
5251ltp1d 11608 . . . . 5 (𝑀 ∈ ℕ → 𝑀 < (𝑀 + 1))
53 fzdisj 12983 . . . . 5 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
5415, 52, 533syl 18 . . . 4 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
5550, 9, 28, 2, 14, 54, 7, 26esumsplit 31540 . . 3 (𝜑 → Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
5649, 55eqtrd 2793 . 2 (𝜑 → Σ*𝑘 ∈ (1...𝑁)𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
5739, 42, 563brtr4d 5064 1 (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑁)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3070  Vcvv 3409  cun 3856  cin 3857  wss 3858  c0 4225   class class class wbr 5032  cfv 6335  (class class class)co 7150  0cc0 10575  1c1 10576   + caddc 10578  +∞cpnf 10710  *cxr 10712   < clt 10713  cle 10714  cn 11674  cuz 12282   +𝑒 cxad 12546  [,)cico 12781  [,]cicc 12782  ...cfz 12939  Σ*cesum 31514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-pi 15474  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-ordt 16832  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-ps 17876  df-tsr 17877  df-plusf 17917  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-mhm 18022  df-submnd 18023  df-grp 18172  df-minusg 18173  df-sbg 18174  df-mulg 18292  df-subg 18343  df-cntz 18514  df-cmn 18975  df-abl 18976  df-mgp 19308  df-ur 19320  df-ring 19367  df-cring 19368  df-subrg 19601  df-abv 19656  df-lmod 19704  df-scaf 19705  df-sra 20012  df-rgmod 20013  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-tmd 22772  df-tgp 22773  df-tsms 22827  df-trg 22860  df-xms 23022  df-ms 23023  df-tms 23024  df-nm 23284  df-ngp 23285  df-nrg 23287  df-nlm 23288  df-ii 23578  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247  df-esum 31515
This theorem is referenced by:  esumcvg  31573
  Copyright terms: Public domain W3C validator