![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpmono | Structured version Visualization version GIF version |
Description: The partial sums in an extended sum form a monotonic sequence. (Contributed by Thierry Arnoux, 31-Aug-2017.) |
Ref | Expression |
---|---|
esumpmono.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
esumpmono.2 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
esumpmono.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) |
Ref | Expression |
---|---|
esumpmono | ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑁)𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13490 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | ovexd 7483 | . . . . . 6 ⊢ (𝜑 → (1...𝑀) ∈ V) | |
3 | elfznn 13613 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ) | |
4 | icossicc 13496 | . . . . . . . . 9 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
5 | esumpmono.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) | |
6 | 4, 5 | sselid 4006 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) |
7 | 3, 6 | sylan2 592 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 𝐴 ∈ (0[,]+∞)) |
8 | 7 | ralrimiva 3152 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) |
9 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑘(1...𝑀) | |
10 | 9 | esumcl 33994 | . . . . . 6 ⊢ (((1...𝑀) ∈ V ∧ ∀𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) |
11 | 2, 8, 10 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) |
12 | 1, 11 | sselid 4006 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ*) |
13 | 12 | xrleidd 13214 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴) |
14 | ovexd 7483 | . . . . 5 ⊢ (𝜑 → ((𝑀 + 1)...𝑁) ∈ V) | |
15 | esumpmono.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
16 | 15 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℕ) |
17 | peano2nn 12305 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ) | |
18 | nnuz 12946 | . . . . . . . . . . 11 ⊢ ℕ = (ℤ≥‘1) | |
19 | 17, 18 | eleqtrdi 2854 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ → (𝑀 + 1) ∈ (ℤ≥‘1)) |
20 | fzss1 13623 | . . . . . . . . . 10 ⊢ ((𝑀 + 1) ∈ (ℤ≥‘1) → ((𝑀 + 1)...𝑁) ⊆ (1...𝑁)) | |
21 | 16, 19, 20 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((𝑀 + 1)...𝑁) ⊆ (1...𝑁)) |
22 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ((𝑀 + 1)...𝑁)) | |
23 | 21, 22 | sseldd 4009 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (1...𝑁)) |
24 | elfznn 13613 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℕ) |
26 | 25, 6 | syldan 590 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ (0[,]+∞)) |
27 | 26 | ralrimiva 3152 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) |
28 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑘((𝑀 + 1)...𝑁) | |
29 | 28 | esumcl 33994 | . . . . 5 ⊢ ((((𝑀 + 1)...𝑁) ∈ V ∧ ∀𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) |
30 | 14, 27, 29 | syl2anc 583 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) |
31 | elxrge0 13517 | . . . . 5 ⊢ (Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞) ↔ (Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ* ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) | |
32 | 31 | simprbi 496 | . . . 4 ⊢ (Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞) → 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) |
33 | 30, 32 | syl 17 | . . 3 ⊢ (𝜑 → 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) |
34 | 0xr 11337 | . . . . 5 ⊢ 0 ∈ ℝ* | |
35 | 34 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ*) |
36 | 1, 30 | sselid 4006 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ*) |
37 | xle2add 13321 | . . . 4 ⊢ (((Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* ∧ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ*)) → ((Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴 ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))) | |
38 | 12, 35, 12, 36, 37 | syl22anc 838 | . . 3 ⊢ (𝜑 → ((Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴 ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))) |
39 | 13, 33, 38 | mp2and 698 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
40 | xaddrid 13303 | . . . 4 ⊢ (Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) = Σ*𝑘 ∈ (1...𝑀)𝐴) | |
41 | 12, 40 | syl 17 | . . 3 ⊢ (𝜑 → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) = Σ*𝑘 ∈ (1...𝑀)𝐴) |
42 | 41 | eqcomd 2746 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0)) |
43 | 15, 18 | eleqtrdi 2854 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘1)) |
44 | esumpmono.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
45 | eluzfz 13579 | . . . . 5 ⊢ ((𝑀 ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ (1...𝑁)) | |
46 | 43, 44, 45 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
47 | fzsplit 13610 | . . . 4 ⊢ (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) | |
48 | esumeq1 33998 | . . . 4 ⊢ ((1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)) → Σ*𝑘 ∈ (1...𝑁)𝐴 = Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴) | |
49 | 46, 47, 48 | 3syl 18 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑁)𝐴 = Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴) |
50 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
51 | nnre 12300 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
52 | 51 | ltp1d 12225 | . . . . 5 ⊢ (𝑀 ∈ ℕ → 𝑀 < (𝑀 + 1)) |
53 | fzdisj 13611 | . . . . 5 ⊢ (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) | |
54 | 15, 52, 53 | 3syl 18 | . . . 4 ⊢ (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
55 | 50, 9, 28, 2, 14, 54, 7, 26 | esumsplit 34017 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
56 | 49, 55 | eqtrd 2780 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑁)𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
57 | 39, 42, 56 | 3brtr4d 5198 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑁)𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 ℕcn 12293 ℤ≥cuz 12903 +𝑒 cxad 13173 [,)cico 13409 [,]cicc 13410 ...cfz 13567 Σ*cesum 33991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-ordt 17561 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-ps 18636 df-tsr 18637 df-plusf 18677 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-subrng 20572 df-subrg 20597 df-abv 20832 df-lmod 20882 df-scaf 20883 df-sra 21195 df-rgmod 21196 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-tmd 24101 df-tgp 24102 df-tsms 24156 df-trg 24189 df-xms 24351 df-ms 24352 df-tms 24353 df-nm 24616 df-ngp 24617 df-nrg 24619 df-nlm 24620 df-ii 24922 df-cncf 24923 df-limc 25921 df-dv 25922 df-log 26616 df-esum 33992 |
This theorem is referenced by: esumcvg 34050 |
Copyright terms: Public domain | W3C validator |