![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpmono | Structured version Visualization version GIF version |
Description: The partial sums in an extended sum form a monotonic sequence. (Contributed by Thierry Arnoux, 31-Aug-2017.) |
Ref | Expression |
---|---|
esumpmono.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
esumpmono.2 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
esumpmono.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) |
Ref | Expression |
---|---|
esumpmono | ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑁)𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13413 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | ovexd 7440 | . . . . . 6 ⊢ (𝜑 → (1...𝑀) ∈ V) | |
3 | elfznn 13536 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ) | |
4 | icossicc 13419 | . . . . . . . . 9 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
5 | esumpmono.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) | |
6 | 4, 5 | sselid 3975 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) |
7 | 3, 6 | sylan2 592 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 𝐴 ∈ (0[,]+∞)) |
8 | 7 | ralrimiva 3140 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) |
9 | nfcv 2897 | . . . . . . 7 ⊢ Ⅎ𝑘(1...𝑀) | |
10 | 9 | esumcl 33558 | . . . . . 6 ⊢ (((1...𝑀) ∈ V ∧ ∀𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) |
11 | 2, 8, 10 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) |
12 | 1, 11 | sselid 3975 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ*) |
13 | 12 | xrleidd 13137 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴) |
14 | ovexd 7440 | . . . . 5 ⊢ (𝜑 → ((𝑀 + 1)...𝑁) ∈ V) | |
15 | esumpmono.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
16 | 15 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℕ) |
17 | peano2nn 12228 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ) | |
18 | nnuz 12869 | . . . . . . . . . . 11 ⊢ ℕ = (ℤ≥‘1) | |
19 | 17, 18 | eleqtrdi 2837 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ → (𝑀 + 1) ∈ (ℤ≥‘1)) |
20 | fzss1 13546 | . . . . . . . . . 10 ⊢ ((𝑀 + 1) ∈ (ℤ≥‘1) → ((𝑀 + 1)...𝑁) ⊆ (1...𝑁)) | |
21 | 16, 19, 20 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((𝑀 + 1)...𝑁) ⊆ (1...𝑁)) |
22 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ((𝑀 + 1)...𝑁)) | |
23 | 21, 22 | sseldd 3978 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (1...𝑁)) |
24 | elfznn 13536 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℕ) |
26 | 25, 6 | syldan 590 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ (0[,]+∞)) |
27 | 26 | ralrimiva 3140 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) |
28 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑘((𝑀 + 1)...𝑁) | |
29 | 28 | esumcl 33558 | . . . . 5 ⊢ ((((𝑀 + 1)...𝑁) ∈ V ∧ ∀𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) |
30 | 14, 27, 29 | syl2anc 583 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) |
31 | elxrge0 13440 | . . . . 5 ⊢ (Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞) ↔ (Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ* ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) | |
32 | 31 | simprbi 496 | . . . 4 ⊢ (Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞) → 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) |
33 | 30, 32 | syl 17 | . . 3 ⊢ (𝜑 → 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) |
34 | 0xr 11265 | . . . . 5 ⊢ 0 ∈ ℝ* | |
35 | 34 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ*) |
36 | 1, 30 | sselid 3975 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ*) |
37 | xle2add 13244 | . . . 4 ⊢ (((Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* ∧ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ*)) → ((Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴 ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))) | |
38 | 12, 35, 12, 36, 37 | syl22anc 836 | . . 3 ⊢ (𝜑 → ((Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴 ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))) |
39 | 13, 33, 38 | mp2and 696 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
40 | xaddrid 13226 | . . . 4 ⊢ (Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) = Σ*𝑘 ∈ (1...𝑀)𝐴) | |
41 | 12, 40 | syl 17 | . . 3 ⊢ (𝜑 → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) = Σ*𝑘 ∈ (1...𝑀)𝐴) |
42 | 41 | eqcomd 2732 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0)) |
43 | 15, 18 | eleqtrdi 2837 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘1)) |
44 | esumpmono.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
45 | eluzfz 13502 | . . . . 5 ⊢ ((𝑀 ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ (1...𝑁)) | |
46 | 43, 44, 45 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
47 | fzsplit 13533 | . . . 4 ⊢ (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) | |
48 | esumeq1 33562 | . . . 4 ⊢ ((1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)) → Σ*𝑘 ∈ (1...𝑁)𝐴 = Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴) | |
49 | 46, 47, 48 | 3syl 18 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑁)𝐴 = Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴) |
50 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
51 | nnre 12223 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
52 | 51 | ltp1d 12148 | . . . . 5 ⊢ (𝑀 ∈ ℕ → 𝑀 < (𝑀 + 1)) |
53 | fzdisj 13534 | . . . . 5 ⊢ (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) | |
54 | 15, 52, 53 | 3syl 18 | . . . 4 ⊢ (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
55 | 50, 9, 28, 2, 14, 54, 7, 26 | esumsplit 33581 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
56 | 49, 55 | eqtrd 2766 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑁)𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
57 | 39, 42, 56 | 3brtr4d 5173 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑁)𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 Vcvv 3468 ∪ cun 3941 ∩ cin 3942 ⊆ wss 3943 ∅c0 4317 class class class wbr 5141 ‘cfv 6537 (class class class)co 7405 0cc0 11112 1c1 11113 + caddc 11115 +∞cpnf 11249 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 ℕcn 12216 ℤ≥cuz 12826 +𝑒 cxad 13096 [,)cico 13332 [,]cicc 13333 ...cfz 13490 Σ*cesum 33555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ioo 13334 df-ioc 13335 df-ico 13336 df-icc 13337 df-fz 13491 df-fzo 13634 df-fl 13763 df-mod 13841 df-seq 13973 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15020 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-limsup 15421 df-clim 15438 df-rlim 15439 df-sum 15639 df-ef 16017 df-sin 16019 df-cos 16020 df-pi 16022 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-hom 17230 df-cco 17231 df-rest 17377 df-topn 17378 df-0g 17396 df-gsum 17397 df-topgen 17398 df-pt 17399 df-prds 17402 df-ordt 17456 df-xrs 17457 df-qtop 17462 df-imas 17463 df-xps 17465 df-mre 17539 df-mrc 17540 df-acs 17542 df-ps 18531 df-tsr 18532 df-plusf 18572 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18713 df-submnd 18714 df-grp 18866 df-minusg 18867 df-sbg 18868 df-mulg 18996 df-subg 19050 df-cntz 19233 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-cring 20141 df-subrng 20446 df-subrg 20471 df-abv 20660 df-lmod 20708 df-scaf 20709 df-sra 21021 df-rgmod 21022 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22751 df-topon 22768 df-topsp 22790 df-bases 22804 df-cld 22878 df-ntr 22879 df-cls 22880 df-nei 22957 df-lp 22995 df-perf 22996 df-cn 23086 df-cnp 23087 df-haus 23174 df-tx 23421 df-hmeo 23614 df-fil 23705 df-fm 23797 df-flim 23798 df-flf 23799 df-tmd 23931 df-tgp 23932 df-tsms 23986 df-trg 24019 df-xms 24181 df-ms 24182 df-tms 24183 df-nm 24446 df-ngp 24447 df-nrg 24449 df-nlm 24450 df-ii 24752 df-cncf 24753 df-limc 25750 df-dv 25751 df-log 26445 df-esum 33556 |
This theorem is referenced by: esumcvg 33614 |
Copyright terms: Public domain | W3C validator |