![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpmono | Structured version Visualization version GIF version |
Description: The partial sums in an extended sum form a monotonic sequence. (Contributed by Thierry Arnoux, 31-Aug-2017.) |
Ref | Expression |
---|---|
esumpmono.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
esumpmono.2 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
esumpmono.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) |
Ref | Expression |
---|---|
esumpmono | ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑁)𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13403 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | ovexd 7440 | . . . . . 6 ⊢ (𝜑 → (1...𝑀) ∈ V) | |
3 | elfznn 13526 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ) | |
4 | icossicc 13409 | . . . . . . . . 9 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
5 | esumpmono.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) | |
6 | 4, 5 | sselid 3979 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) |
7 | 3, 6 | sylan2 593 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → 𝐴 ∈ (0[,]+∞)) |
8 | 7 | ralrimiva 3146 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) |
9 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑘(1...𝑀) | |
10 | 9 | esumcl 33016 | . . . . . 6 ⊢ (((1...𝑀) ∈ V ∧ ∀𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) |
11 | 2, 8, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ (0[,]+∞)) |
12 | 1, 11 | sselid 3979 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ*) |
13 | 12 | xrleidd 13127 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴) |
14 | ovexd 7440 | . . . . 5 ⊢ (𝜑 → ((𝑀 + 1)...𝑁) ∈ V) | |
15 | esumpmono.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
16 | 15 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℕ) |
17 | peano2nn 12220 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ) | |
18 | nnuz 12861 | . . . . . . . . . . 11 ⊢ ℕ = (ℤ≥‘1) | |
19 | 17, 18 | eleqtrdi 2843 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ → (𝑀 + 1) ∈ (ℤ≥‘1)) |
20 | fzss1 13536 | . . . . . . . . . 10 ⊢ ((𝑀 + 1) ∈ (ℤ≥‘1) → ((𝑀 + 1)...𝑁) ⊆ (1...𝑁)) | |
21 | 16, 19, 20 | 3syl 18 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((𝑀 + 1)...𝑁) ⊆ (1...𝑁)) |
22 | simpr 485 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ((𝑀 + 1)...𝑁)) | |
23 | 21, 22 | sseldd 3982 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (1...𝑁)) |
24 | elfznn 13526 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℕ) |
26 | 25, 6 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ (0[,]+∞)) |
27 | 26 | ralrimiva 3146 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) |
28 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑘((𝑀 + 1)...𝑁) | |
29 | 28 | esumcl 33016 | . . . . 5 ⊢ ((((𝑀 + 1)...𝑁) ∈ V ∧ ∀𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) |
30 | 14, 27, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞)) |
31 | elxrge0 13430 | . . . . 5 ⊢ (Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞) ↔ (Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ* ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) | |
32 | 31 | simprbi 497 | . . . 4 ⊢ (Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ (0[,]+∞) → 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) |
33 | 30, 32 | syl 17 | . . 3 ⊢ (𝜑 → 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) |
34 | 0xr 11257 | . . . . 5 ⊢ 0 ∈ ℝ* | |
35 | 34 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ*) |
36 | 1, 30 | sselid 3979 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ*) |
37 | xle2add 13234 | . . . 4 ⊢ (((Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* ∧ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 ∈ ℝ*)) → ((Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴 ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))) | |
38 | 12, 35, 12, 36, 37 | syl22anc 837 | . . 3 ⊢ (𝜑 → ((Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑀)𝐴 ∧ 0 ≤ Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴) → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))) |
39 | 13, 33, 38 | mp2and 697 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) ≤ (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
40 | xaddrid 13216 | . . . 4 ⊢ (Σ*𝑘 ∈ (1...𝑀)𝐴 ∈ ℝ* → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) = Σ*𝑘 ∈ (1...𝑀)𝐴) | |
41 | 12, 40 | syl 17 | . . 3 ⊢ (𝜑 → (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0) = Σ*𝑘 ∈ (1...𝑀)𝐴) |
42 | 41 | eqcomd 2738 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 0)) |
43 | 15, 18 | eleqtrdi 2843 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘1)) |
44 | esumpmono.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
45 | eluzfz 13492 | . . . . 5 ⊢ ((𝑀 ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ (1...𝑁)) | |
46 | 43, 44, 45 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
47 | fzsplit 13523 | . . . 4 ⊢ (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) | |
48 | esumeq1 33020 | . . . 4 ⊢ ((1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)) → Σ*𝑘 ∈ (1...𝑁)𝐴 = Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴) | |
49 | 46, 47, 48 | 3syl 18 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑁)𝐴 = Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴) |
50 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
51 | nnre 12215 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
52 | 51 | ltp1d 12140 | . . . . 5 ⊢ (𝑀 ∈ ℕ → 𝑀 < (𝑀 + 1)) |
53 | fzdisj 13524 | . . . . 5 ⊢ (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) | |
54 | 15, 52, 53 | 3syl 18 | . . . 4 ⊢ (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
55 | 50, 9, 28, 2, 14, 54, 7, 26 | esumsplit 33039 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
56 | 49, 55 | eqtrd 2772 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑁)𝐴 = (Σ*𝑘 ∈ (1...𝑀)𝐴 +𝑒 Σ*𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
57 | 39, 42, 56 | 3brtr4d 5179 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ (1...𝑀)𝐴 ≤ Σ*𝑘 ∈ (1...𝑁)𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 0cc0 11106 1c1 11107 + caddc 11109 +∞cpnf 11241 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 ℕcn 12208 ℤ≥cuz 12818 +𝑒 cxad 13086 [,)cico 13322 [,]cicc 13323 ...cfz 13480 Σ*cesum 33013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 df-pi 16012 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-ordt 17443 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-ps 18515 df-tsr 18516 df-plusf 18556 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-cntz 19175 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 df-subrg 20353 df-abv 20417 df-lmod 20465 df-scaf 20466 df-sra 20777 df-rgmod 20778 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-fbas 20933 df-fg 20934 df-cnfld 20937 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cld 22514 df-ntr 22515 df-cls 22516 df-nei 22593 df-lp 22631 df-perf 22632 df-cn 22722 df-cnp 22723 df-haus 22810 df-tx 23057 df-hmeo 23250 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-tmd 23567 df-tgp 23568 df-tsms 23622 df-trg 23655 df-xms 23817 df-ms 23818 df-tms 23819 df-nm 24082 df-ngp 24083 df-nrg 24085 df-nlm 24086 df-ii 24384 df-cncf 24385 df-limc 25374 df-dv 25375 df-log 26056 df-esum 33014 |
This theorem is referenced by: esumcvg 33072 |
Copyright terms: Public domain | W3C validator |