![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpr | Structured version Visualization version GIF version |
Description: Extended sum over a pair. (Contributed by Thierry Arnoux, 2-Jan-2017.) |
Ref | Expression |
---|---|
esumpr.1 | ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) |
esumpr.2 | ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) |
esumpr.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumpr.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
esumpr.5 | ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) |
esumpr.6 | ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) |
esumpr.7 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
esumpr | ⊢ (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4626 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | esumeq1 33562 | . . 3 ⊢ ({𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ ({𝐴} ∪ {𝐵})𝐶) | |
3 | 1, 2 | mp1i 13 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ ({𝐴} ∪ {𝐵})𝐶) |
4 | nfv 1909 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
5 | nfcv 2897 | . . 3 ⊢ Ⅎ𝑘{𝐴} | |
6 | nfcv 2897 | . . 3 ⊢ Ⅎ𝑘{𝐵} | |
7 | snex 5424 | . . . 4 ⊢ {𝐴} ∈ V | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴} ∈ V) |
9 | snex 5424 | . . . 4 ⊢ {𝐵} ∈ V | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐵} ∈ V) |
11 | esumpr.7 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
12 | disjsn2 4711 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
14 | elsni 4640 | . . . . 5 ⊢ (𝑘 ∈ {𝐴} → 𝑘 = 𝐴) | |
15 | esumpr.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) | |
16 | 14, 15 | sylan2 592 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴}) → 𝐶 = 𝐷) |
17 | esumpr.5 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) | |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴}) → 𝐷 ∈ (0[,]+∞)) |
19 | 16, 18 | eqeltrd 2827 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴}) → 𝐶 ∈ (0[,]+∞)) |
20 | elsni 4640 | . . . . 5 ⊢ (𝑘 ∈ {𝐵} → 𝑘 = 𝐵) | |
21 | esumpr.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) | |
22 | 20, 21 | sylan2 592 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐵}) → 𝐶 = 𝐸) |
23 | esumpr.6 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) | |
24 | 23 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐵}) → 𝐸 ∈ (0[,]+∞)) |
25 | 22, 24 | eqeltrd 2827 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐵}) → 𝐶 ∈ (0[,]+∞)) |
26 | 4, 5, 6, 8, 10, 13, 19, 25 | esumsplit 33581 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ ({𝐴} ∪ {𝐵})𝐶 = (Σ*𝑘 ∈ {𝐴}𝐶 +𝑒 Σ*𝑘 ∈ {𝐵}𝐶)) |
27 | esumpr.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
28 | 15, 27, 17 | esumsn 33593 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ {𝐴}𝐶 = 𝐷) |
29 | esumpr.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
30 | 21, 29, 23 | esumsn 33593 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐸) |
31 | 28, 30 | oveq12d 7422 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ {𝐴}𝐶 +𝑒 Σ*𝑘 ∈ {𝐵}𝐶) = (𝐷 +𝑒 𝐸)) |
32 | 3, 26, 31 | 3eqtrd 2770 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 Vcvv 3468 ∪ cun 3941 ∩ cin 3942 ∅c0 4317 {csn 4623 {cpr 4625 (class class class)co 7404 0cc0 11109 +∞cpnf 11246 +𝑒 cxad 13093 [,]cicc 13330 Σ*cesum 33555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ioo 13331 df-ioc 13332 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-fl 13760 df-mod 13838 df-seq 13970 df-exp 14031 df-fac 14237 df-bc 14266 df-hash 14294 df-shft 15018 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-limsup 15419 df-clim 15436 df-rlim 15437 df-sum 15637 df-ef 16015 df-sin 16017 df-cos 16018 df-pi 16020 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-ordt 17454 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-ps 18529 df-tsr 18530 df-plusf 18570 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-mulg 18994 df-subg 19048 df-cntz 19231 df-cmn 19700 df-abl 19701 df-mgp 20038 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-subrng 20444 df-subrg 20469 df-abv 20658 df-lmod 20706 df-scaf 20707 df-sra 21019 df-rgmod 21020 df-psmet 21228 df-xmet 21229 df-met 21230 df-bl 21231 df-mopn 21232 df-fbas 21233 df-fg 21234 df-cnfld 21237 df-top 22747 df-topon 22764 df-topsp 22786 df-bases 22800 df-cld 22874 df-ntr 22875 df-cls 22876 df-nei 22953 df-lp 22991 df-perf 22992 df-cn 23082 df-cnp 23083 df-haus 23170 df-tx 23417 df-hmeo 23610 df-fil 23701 df-fm 23793 df-flim 23794 df-flf 23795 df-tmd 23927 df-tgp 23928 df-tsms 23982 df-trg 24015 df-xms 24177 df-ms 24178 df-tms 24179 df-nm 24442 df-ngp 24443 df-nrg 24445 df-nlm 24446 df-ii 24748 df-cncf 24749 df-limc 25746 df-dv 25747 df-log 26441 df-esum 33556 |
This theorem is referenced by: esumpr2 33595 carsgsigalem 33844 pmeasmono 33853 probun 33948 |
Copyright terms: Public domain | W3C validator |