Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpr | Structured version Visualization version GIF version |
Description: Extended sum over a pair. (Contributed by Thierry Arnoux, 2-Jan-2017.) |
Ref | Expression |
---|---|
esumpr.1 | ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) |
esumpr.2 | ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) |
esumpr.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumpr.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
esumpr.5 | ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) |
esumpr.6 | ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) |
esumpr.7 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
esumpr | ⊢ (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4570 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | esumeq1 31990 | . . 3 ⊢ ({𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ ({𝐴} ∪ {𝐵})𝐶) | |
3 | 1, 2 | mp1i 13 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ ({𝐴} ∪ {𝐵})𝐶) |
4 | nfv 1921 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
5 | nfcv 2909 | . . 3 ⊢ Ⅎ𝑘{𝐴} | |
6 | nfcv 2909 | . . 3 ⊢ Ⅎ𝑘{𝐵} | |
7 | snex 5358 | . . . 4 ⊢ {𝐴} ∈ V | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴} ∈ V) |
9 | snex 5358 | . . . 4 ⊢ {𝐵} ∈ V | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐵} ∈ V) |
11 | esumpr.7 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
12 | disjsn2 4654 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
14 | elsni 4584 | . . . . 5 ⊢ (𝑘 ∈ {𝐴} → 𝑘 = 𝐴) | |
15 | esumpr.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) | |
16 | 14, 15 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴}) → 𝐶 = 𝐷) |
17 | esumpr.5 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) | |
18 | 17 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴}) → 𝐷 ∈ (0[,]+∞)) |
19 | 16, 18 | eqeltrd 2841 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴}) → 𝐶 ∈ (0[,]+∞)) |
20 | elsni 4584 | . . . . 5 ⊢ (𝑘 ∈ {𝐵} → 𝑘 = 𝐵) | |
21 | esumpr.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) | |
22 | 20, 21 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐵}) → 𝐶 = 𝐸) |
23 | esumpr.6 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) | |
24 | 23 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐵}) → 𝐸 ∈ (0[,]+∞)) |
25 | 22, 24 | eqeltrd 2841 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐵}) → 𝐶 ∈ (0[,]+∞)) |
26 | 4, 5, 6, 8, 10, 13, 19, 25 | esumsplit 32009 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ ({𝐴} ∪ {𝐵})𝐶 = (Σ*𝑘 ∈ {𝐴}𝐶 +𝑒 Σ*𝑘 ∈ {𝐵}𝐶)) |
27 | esumpr.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
28 | 15, 27, 17 | esumsn 32021 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ {𝐴}𝐶 = 𝐷) |
29 | esumpr.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
30 | 21, 29, 23 | esumsn 32021 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐸) |
31 | 28, 30 | oveq12d 7287 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ {𝐴}𝐶 +𝑒 Σ*𝑘 ∈ {𝐵}𝐶) = (𝐷 +𝑒 𝐸)) |
32 | 3, 26, 31 | 3eqtrd 2784 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 Vcvv 3431 ∪ cun 3890 ∩ cin 3891 ∅c0 4262 {csn 4567 {cpr 4569 (class class class)co 7269 0cc0 10864 +∞cpnf 10999 +𝑒 cxad 12837 [,]cicc 13073 Σ*cesum 31983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-inf2 9369 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 ax-pre-sup 10942 ax-addf 10943 ax-mulf 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-of 7525 df-om 7702 df-1st 7818 df-2nd 7819 df-supp 7963 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-1o 8282 df-2o 8283 df-er 8473 df-map 8592 df-pm 8593 df-ixp 8661 df-en 8709 df-dom 8710 df-sdom 8711 df-fin 8712 df-fsupp 9099 df-fi 9140 df-sup 9171 df-inf 9172 df-oi 9239 df-card 9690 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-div 11625 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-5 12031 df-6 12032 df-7 12033 df-8 12034 df-9 12035 df-n0 12226 df-z 12312 df-dec 12429 df-uz 12574 df-q 12680 df-rp 12722 df-xneg 12839 df-xadd 12840 df-xmul 12841 df-ioo 13074 df-ioc 13075 df-ico 13076 df-icc 13077 df-fz 13231 df-fzo 13374 df-fl 13502 df-mod 13580 df-seq 13712 df-exp 13773 df-fac 13978 df-bc 14007 df-hash 14035 df-shft 14768 df-cj 14800 df-re 14801 df-im 14802 df-sqrt 14936 df-abs 14937 df-limsup 15170 df-clim 15187 df-rlim 15188 df-sum 15388 df-ef 15767 df-sin 15769 df-cos 15770 df-pi 15772 df-struct 16838 df-sets 16855 df-slot 16873 df-ndx 16885 df-base 16903 df-ress 16932 df-plusg 16965 df-mulr 16966 df-starv 16967 df-sca 16968 df-vsca 16969 df-ip 16970 df-tset 16971 df-ple 16972 df-ds 16974 df-unif 16975 df-hom 16976 df-cco 16977 df-rest 17123 df-topn 17124 df-0g 17142 df-gsum 17143 df-topgen 17144 df-pt 17145 df-prds 17148 df-ordt 17202 df-xrs 17203 df-qtop 17208 df-imas 17209 df-xps 17211 df-mre 17285 df-mrc 17286 df-acs 17288 df-ps 18274 df-tsr 18275 df-plusf 18315 df-mgm 18316 df-sgrp 18365 df-mnd 18376 df-mhm 18420 df-submnd 18421 df-grp 18570 df-minusg 18571 df-sbg 18572 df-mulg 18691 df-subg 18742 df-cntz 18913 df-cmn 19378 df-abl 19379 df-mgp 19711 df-ur 19728 df-ring 19775 df-cring 19776 df-subrg 20012 df-abv 20067 df-lmod 20115 df-scaf 20116 df-sra 20424 df-rgmod 20425 df-psmet 20579 df-xmet 20580 df-met 20581 df-bl 20582 df-mopn 20583 df-fbas 20584 df-fg 20585 df-cnfld 20588 df-top 22033 df-topon 22050 df-topsp 22072 df-bases 22086 df-cld 22160 df-ntr 22161 df-cls 22162 df-nei 22239 df-lp 22277 df-perf 22278 df-cn 22368 df-cnp 22369 df-haus 22456 df-tx 22703 df-hmeo 22896 df-fil 22987 df-fm 23079 df-flim 23080 df-flf 23081 df-tmd 23213 df-tgp 23214 df-tsms 23268 df-trg 23301 df-xms 23463 df-ms 23464 df-tms 23465 df-nm 23728 df-ngp 23729 df-nrg 23731 df-nlm 23732 df-ii 24030 df-cncf 24031 df-limc 25020 df-dv 25021 df-log 25702 df-esum 31984 |
This theorem is referenced by: esumpr2 32023 carsgsigalem 32270 pmeasmono 32279 probun 32374 |
Copyright terms: Public domain | W3C validator |