Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumrnmpt Structured version   Visualization version   GIF version

Theorem esumrnmpt 33045
Description: Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 27-May-2020.)
Hypotheses
Ref Expression
esumrnmpt.0 𝑘𝐴
esumrnmpt.1 (𝑦 = 𝐵𝐶 = 𝐷)
esumrnmpt.2 (𝜑𝐴𝑉)
esumrnmpt.3 ((𝜑𝑘𝐴) → 𝐷 ∈ (0[,]+∞))
esumrnmpt.4 ((𝜑𝑘𝐴) → 𝐵 ∈ (𝑊 ∖ {∅}))
esumrnmpt.5 (𝜑Disj 𝑘𝐴 𝐵)
Assertion
Ref Expression
esumrnmpt (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐷)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝐶,𝑘   𝑦,𝐷   𝑘,𝑊   𝜑,𝑘,𝑦
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑦)   𝐷(𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑦)

Proof of Theorem esumrnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
21rnmpt 5954 . . 3 ran (𝑘𝐴𝐵) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵}
3 esumeq1 33027 . . 3 (ran (𝑘𝐴𝐵) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵}𝐶)
42, 3ax-mp 5 . 2 Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵}𝐶
5 nfcv 2903 . . 3 𝑘𝐶
6 nfv 1917 . . 3 𝑘𝜑
7 esumrnmpt.0 . . 3 𝑘𝐴
8 esumrnmpt.1 . . 3 (𝑦 = 𝐵𝐶 = 𝐷)
9 esumrnmpt.2 . . 3 (𝜑𝐴𝑉)
10 esumrnmpt.4 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ (𝑊 ∖ {∅}))
11 esumrnmpt.5 . . . 4 (𝜑Disj 𝑘𝐴 𝐵)
126, 7, 10, 11disjdsct 31919 . . 3 (𝜑 → Fun (𝑘𝐴𝐵))
13 esumrnmpt.3 . . 3 ((𝜑𝑘𝐴) → 𝐷 ∈ (0[,]+∞))
145, 6, 7, 8, 9, 12, 13, 10esumc 33044 . 2 (𝜑 → Σ*𝑘𝐴𝐷 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵}𝐶)
154, 14eqtr4id 2791 1 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {cab 2709  wnfc 2883  wrex 3070  cdif 3945  c0 4322  {csn 4628  Disj wdisj 5113  cmpt 5231  ran crn 5677  (class class class)co 7408  0cc0 11109  +∞cpnf 11244  [,]cicc 13326  Σ*cesum 33020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-fi 9405  df-oi 9504  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-xadd 13092  df-icc 13330  df-fz 13484  df-fzo 13627  df-seq 13966  df-hash 14290  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-tset 17215  df-ple 17216  df-ds 17218  df-rest 17367  df-topn 17368  df-0g 17386  df-gsum 17387  df-topgen 17388  df-ordt 17446  df-xrs 17447  df-ps 18518  df-tsr 18519  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-submnd 18671  df-cntz 19180  df-cmn 19649  df-fbas 20940  df-fg 20941  df-top 22395  df-topon 22412  df-topsp 22434  df-bases 22448  df-ntr 22523  df-nei 22601  df-fil 23349  df-fm 23441  df-flim 23442  df-flf 23443  df-tsms 23630  df-esum 33021
This theorem is referenced by:  esumrnmpt2  33061
  Copyright terms: Public domain W3C validator