Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumrnmpt Structured version   Visualization version   GIF version

Theorem esumrnmpt 34008
Description: Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 27-May-2020.)
Hypotheses
Ref Expression
esumrnmpt.0 𝑘𝐴
esumrnmpt.1 (𝑦 = 𝐵𝐶 = 𝐷)
esumrnmpt.2 (𝜑𝐴𝑉)
esumrnmpt.3 ((𝜑𝑘𝐴) → 𝐷 ∈ (0[,]+∞))
esumrnmpt.4 ((𝜑𝑘𝐴) → 𝐵 ∈ (𝑊 ∖ {∅}))
esumrnmpt.5 (𝜑Disj 𝑘𝐴 𝐵)
Assertion
Ref Expression
esumrnmpt (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐷)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝐶,𝑘   𝑦,𝐷   𝑘,𝑊   𝜑,𝑘,𝑦
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑦)   𝐷(𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑦)

Proof of Theorem esumrnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
21rnmpt 5979 . . 3 ran (𝑘𝐴𝐵) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵}
3 esumeq1 33990 . . 3 (ran (𝑘𝐴𝐵) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵}𝐶)
42, 3ax-mp 5 . 2 Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵}𝐶
5 nfcv 2904 . . 3 𝑘𝐶
6 nfv 1913 . . 3 𝑘𝜑
7 esumrnmpt.0 . . 3 𝑘𝐴
8 esumrnmpt.1 . . 3 (𝑦 = 𝐵𝐶 = 𝐷)
9 esumrnmpt.2 . . 3 (𝜑𝐴𝑉)
10 esumrnmpt.4 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ (𝑊 ∖ {∅}))
11 esumrnmpt.5 . . . 4 (𝜑Disj 𝑘𝐴 𝐵)
126, 7, 10, 11disjdsct 32706 . . 3 (𝜑 → Fun (𝑘𝐴𝐵))
13 esumrnmpt.3 . . 3 ((𝜑𝑘𝐴) → 𝐷 ∈ (0[,]+∞))
145, 6, 7, 8, 9, 12, 13, 10esumc 34007 . 2 (𝜑 → Σ*𝑘𝐴𝐷 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵}𝐶)
154, 14eqtr4id 2793 1 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2103  {cab 2711  wnfc 2888  wrex 3072  cdif 3967  c0 4347  {csn 4648  Disj wdisj 5136  cmpt 5252  ran crn 5700  (class class class)co 7445  0cc0 11180  +∞cpnf 11317  [,]cicc 13406  Σ*cesum 33983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-disj 5137  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-isom 6581  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-supp 8198  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-2o 8519  df-er 8759  df-map 8882  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-fsupp 9428  df-fi 9476  df-oi 9575  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-8 12358  df-9 12359  df-n0 12550  df-z 12636  df-dec 12755  df-uz 12900  df-xadd 13172  df-icc 13410  df-fz 13564  df-fzo 13708  df-seq 14049  df-hash 14376  df-struct 17189  df-sets 17206  df-slot 17224  df-ndx 17236  df-base 17254  df-ress 17283  df-plusg 17319  df-mulr 17320  df-tset 17325  df-ple 17326  df-ds 17328  df-rest 17477  df-topn 17478  df-0g 17496  df-gsum 17497  df-topgen 17498  df-ordt 17556  df-xrs 17557  df-ps 18631  df-tsr 18632  df-mgm 18673  df-sgrp 18752  df-mnd 18768  df-submnd 18814  df-cntz 19352  df-cmn 19819  df-fbas 21379  df-fg 21380  df-top 22914  df-topon 22931  df-topsp 22953  df-bases 22967  df-ntr 23042  df-nei 23120  df-fil 23868  df-fm 23960  df-flim 23961  df-flf 23962  df-tsms 24149  df-esum 33984
This theorem is referenced by:  esumrnmpt2  34024
  Copyright terms: Public domain W3C validator