![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumrnmpt | Structured version Visualization version GIF version |
Description: Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 27-May-2020.) |
Ref | Expression |
---|---|
esumrnmpt.0 | ⊢ Ⅎ𝑘𝐴 |
esumrnmpt.1 | ⊢ (𝑦 = 𝐵 → 𝐶 = 𝐷) |
esumrnmpt.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumrnmpt.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐷 ∈ (0[,]+∞)) |
esumrnmpt.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (𝑊 ∖ {∅})) |
esumrnmpt.5 | ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
esumrnmpt | ⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | rnmpt 5982 | . . 3 ⊢ ran (𝑘 ∈ 𝐴 ↦ 𝐵) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} |
3 | esumeq1 34000 | . . 3 ⊢ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}𝐶) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}𝐶 |
5 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑘𝐶 | |
6 | nfv 1913 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
7 | esumrnmpt.0 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
8 | esumrnmpt.1 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐶 = 𝐷) | |
9 | esumrnmpt.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | esumrnmpt.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (𝑊 ∖ {∅})) | |
11 | esumrnmpt.5 | . . . 4 ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) | |
12 | 6, 7, 10, 11 | disjdsct 32716 | . . 3 ⊢ (𝜑 → Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐵)) |
13 | esumrnmpt.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐷 ∈ (0[,]+∞)) | |
14 | 5, 6, 7, 8, 9, 12, 13, 10 | esumc 34017 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐷 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}𝐶) |
15 | 4, 14 | eqtr4id 2799 | 1 ⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 Ⅎwnfc 2893 ∃wrex 3076 ∖ cdif 3973 ∅c0 4352 {csn 4648 Disj wdisj 5133 ↦ cmpt 5249 ran crn 5701 (class class class)co 7450 0cc0 11186 +∞cpnf 11323 [,]cicc 13412 Σ*cesum 33993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-supp 8204 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-fsupp 9434 df-fi 9482 df-oi 9581 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-xadd 13178 df-icc 13416 df-fz 13570 df-fzo 13714 df-seq 14055 df-hash 14382 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-tset 17332 df-ple 17333 df-ds 17335 df-rest 17484 df-topn 17485 df-0g 17503 df-gsum 17504 df-topgen 17505 df-ordt 17563 df-xrs 17564 df-ps 18638 df-tsr 18639 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-submnd 18821 df-cntz 19359 df-cmn 19826 df-fbas 21386 df-fg 21387 df-top 22923 df-topon 22940 df-topsp 22962 df-bases 22976 df-ntr 23051 df-nei 23129 df-fil 23877 df-fm 23969 df-flim 23970 df-flf 23971 df-tsms 24158 df-esum 33994 |
This theorem is referenced by: esumrnmpt2 34034 |
Copyright terms: Public domain | W3C validator |