| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumrnmpt | Structured version Visualization version GIF version | ||
| Description: Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 27-May-2020.) |
| Ref | Expression |
|---|---|
| esumrnmpt.0 | ⊢ Ⅎ𝑘𝐴 |
| esumrnmpt.1 | ⊢ (𝑦 = 𝐵 → 𝐶 = 𝐷) |
| esumrnmpt.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumrnmpt.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐷 ∈ (0[,]+∞)) |
| esumrnmpt.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (𝑊 ∖ {∅})) |
| esumrnmpt.5 | ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
| Ref | Expression |
|---|---|
| esumrnmpt | ⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | rnmpt 5950 | . . 3 ⊢ ran (𝑘 ∈ 𝐴 ↦ 𝐵) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} |
| 3 | esumeq1 33976 | . . 3 ⊢ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}𝐶) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}𝐶 |
| 5 | nfcv 2897 | . . 3 ⊢ Ⅎ𝑘𝐶 | |
| 6 | nfv 1913 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 7 | esumrnmpt.0 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
| 8 | esumrnmpt.1 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐶 = 𝐷) | |
| 9 | esumrnmpt.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 10 | esumrnmpt.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (𝑊 ∖ {∅})) | |
| 11 | esumrnmpt.5 | . . . 4 ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) | |
| 12 | 6, 7, 10, 11 | disjdsct 32659 | . . 3 ⊢ (𝜑 → Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 13 | esumrnmpt.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐷 ∈ (0[,]+∞)) | |
| 14 | 5, 6, 7, 8, 9, 12, 13, 10 | esumc 33993 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐷 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}𝐶) |
| 15 | 4, 14 | eqtr4id 2788 | 1 ⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 Ⅎwnfc 2882 ∃wrex 3059 ∖ cdif 3930 ∅c0 4315 {csn 4608 Disj wdisj 5092 ↦ cmpt 5207 ran crn 5668 (class class class)co 7414 0cc0 11138 +∞cpnf 11275 [,]cicc 13373 Σ*cesum 33969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-disj 5093 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-fi 9434 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-xadd 13138 df-icc 13377 df-fz 13531 df-fzo 13678 df-seq 14026 df-hash 14353 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-tset 17296 df-ple 17297 df-ds 17299 df-rest 17443 df-topn 17444 df-0g 17462 df-gsum 17463 df-topgen 17464 df-ordt 17522 df-xrs 17523 df-ps 18585 df-tsr 18586 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-cntz 19309 df-cmn 19773 df-fbas 21328 df-fg 21329 df-top 22867 df-topon 22884 df-topsp 22906 df-bases 22919 df-ntr 22993 df-nei 23071 df-fil 23819 df-fm 23911 df-flim 23912 df-flf 23913 df-tsms 24100 df-esum 33970 |
| This theorem is referenced by: esumrnmpt2 34010 |
| Copyright terms: Public domain | W3C validator |