Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpad2 Structured version   Visualization version   GIF version

Theorem esumpad2 30458
Description: Remove zeroes from an extended sum. (Contributed by Thierry Arnoux, 5-Jun-2020.)
Hypotheses
Ref Expression
esumpad.1 (𝜑𝐴𝑉)
esumpad.2 (𝜑𝐵𝑊)
esumpad.3 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
esumpad.4 ((𝜑𝑘𝐵) → 𝐶 = 0)
Assertion
Ref Expression
esumpad2 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉   𝜑,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑊(𝑘)

Proof of Theorem esumpad2
StepHypRef Expression
1 nfv 1995 . . . 4 𝑘𝜑
2 esumpad.1 . . . 4 (𝜑𝐴𝑉)
3 esumpad.3 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
4 difssd 3889 . . . 4 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
51, 2, 3, 4esummono 30456 . . 3 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 ≤ Σ*𝑘𝐴𝐶)
6 esumpad.2 . . . . . 6 (𝜑𝐵𝑊)
7 unexg 7110 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
82, 6, 7syl2anc 573 . . . . 5 (𝜑 → (𝐴𝐵) ∈ V)
9 elun 3904 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
10 esumpad.4 . . . . . . . 8 ((𝜑𝑘𝐵) → 𝐶 = 0)
11 0e0iccpnf 12490 . . . . . . . 8 0 ∈ (0[,]+∞)
1210, 11syl6eqel 2858 . . . . . . 7 ((𝜑𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
133, 12jaodan 942 . . . . . 6 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → 𝐶 ∈ (0[,]+∞))
149, 13sylan2b 581 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ (0[,]+∞))
15 ssun1 3927 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
1615a1i 11 . . . . 5 (𝜑𝐴 ⊆ (𝐴𝐵))
171, 8, 14, 16esummono 30456 . . . 4 (𝜑 → Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶)
18 undif1 4186 . . . . . 6 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
19 esumeq1 30436 . . . . . 6 (((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵) → Σ*𝑘 ∈ ((𝐴𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2018, 19ax-mp 5 . . . . 5 Σ*𝑘 ∈ ((𝐴𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶
21 difexg 4943 . . . . . . 7 (𝐴𝑉 → (𝐴𝐵) ∈ V)
222, 21syl 17 . . . . . 6 (𝜑 → (𝐴𝐵) ∈ V)
234sselda 3752 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐴)
2423, 3syldan 579 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ (0[,]+∞))
2522, 6, 24, 10esumpad 30457 . . . . 5 (𝜑 → Σ*𝑘 ∈ ((𝐴𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2620, 25syl5eqr 2819 . . . 4 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2717, 26breqtrd 4813 . . 3 (𝜑 → Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶)
285, 27jca 501 . 2 (𝜑 → (Σ*𝑘 ∈ (𝐴𝐵)𝐶 ≤ Σ*𝑘𝐴𝐶 ∧ Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶))
29 iccssxr 12461 . . . 4 (0[,]+∞) ⊆ ℝ*
3024ralrimiva 3115 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ (0[,]+∞))
31 nfcv 2913 . . . . . 6 𝑘(𝐴𝐵)
3231esumcl 30432 . . . . 5 (((𝐴𝐵) ∈ V ∧ ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (𝐴𝐵)𝐶 ∈ (0[,]+∞))
3322, 30, 32syl2anc 573 . . . 4 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 ∈ (0[,]+∞))
3429, 33sseldi 3750 . . 3 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℝ*)
353ralrimiva 3115 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 ∈ (0[,]+∞))
36 nfcv 2913 . . . . . 6 𝑘𝐴
3736esumcl 30432 . . . . 5 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐶 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐶 ∈ (0[,]+∞))
382, 35, 37syl2anc 573 . . . 4 (𝜑 → Σ*𝑘𝐴𝐶 ∈ (0[,]+∞))
3929, 38sseldi 3750 . . 3 (𝜑 → Σ*𝑘𝐴𝐶 ∈ ℝ*)
40 xrletri3 12190 . . 3 ((Σ*𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℝ* ∧ Σ*𝑘𝐴𝐶 ∈ ℝ*) → (Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶 ↔ (Σ*𝑘 ∈ (𝐴𝐵)𝐶 ≤ Σ*𝑘𝐴𝐶 ∧ Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶)))
4134, 39, 40syl2anc 573 . 2 (𝜑 → (Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶 ↔ (Σ*𝑘 ∈ (𝐴𝐵)𝐶 ≤ Σ*𝑘𝐴𝐶 ∧ Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶)))
4228, 41mpbird 247 1 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  wral 3061  Vcvv 3351  cdif 3720  cun 3721  wss 3723   class class class wbr 4787  (class class class)co 6796  0cc0 10142  +∞cpnf 10277  *cxr 10279  cle 10281  [,]cicc 12383  Σ*cesum 30429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-ordt 16369  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-ps 17408  df-tsr 17409  df-plusf 17449  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-subg 17799  df-cntz 17957  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-subrg 18988  df-abv 19027  df-lmod 19075  df-scaf 19076  df-sra 19387  df-rgmod 19388  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-tmd 22096  df-tgp 22097  df-tsms 22150  df-trg 22183  df-xms 22345  df-ms 22346  df-tms 22347  df-nm 22607  df-ngp 22608  df-nrg 22610  df-nlm 22611  df-ii 22900  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524  df-esum 30430
This theorem is referenced by:  omsmeas  30725
  Copyright terms: Public domain W3C validator