![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpad2 | Structured version Visualization version GIF version |
Description: Remove zeroes from an extended sum. (Contributed by Thierry Arnoux, 5-Jun-2020.) |
Ref | Expression |
---|---|
esumpad.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumpad.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
esumpad.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
esumpad.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 0) |
Ref | Expression |
---|---|
esumpad2 | ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
2 | esumpad.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | esumpad.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
4 | difssd 4131 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) | |
5 | 1, 2, 3, 4 | esummono 32990 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ≤ Σ*𝑘 ∈ 𝐴𝐶) |
6 | esumpad.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
7 | unexg 7731 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
8 | 2, 6, 7 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
9 | elun 4147 | . . . . . 6 ⊢ (𝑘 ∈ (𝐴 ∪ 𝐵) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) | |
10 | esumpad.4 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 0) | |
11 | 0e0iccpnf 13432 | . . . . . . . 8 ⊢ 0 ∈ (0[,]+∞) | |
12 | 10, 11 | eqeltrdi 2842 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
13 | 3, 12 | jaodan 957 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
14 | 9, 13 | sylan2b 595 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
15 | ssun1 4171 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (𝐴 ∪ 𝐵)) |
17 | 1, 8, 14, 16 | esummono 32990 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶) |
18 | undif1 4474 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
19 | esumeq1 32970 | . . . . . 6 ⊢ (((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) → Σ*𝑘 ∈ ((𝐴 ∖ 𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ Σ*𝑘 ∈ ((𝐴 ∖ 𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 |
21 | 2 | difexd 5328 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
22 | 4 | sselda 3981 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐵)) → 𝑘 ∈ 𝐴) |
23 | 22, 3 | syldan 592 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
24 | 21, 6, 23, 10 | esumpad 32991 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ ((𝐴 ∖ 𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶) |
25 | 20, 24 | eqtr3id 2787 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶) |
26 | 17, 25 | breqtrd 5173 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶) |
27 | 5, 26 | jca 513 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ≤ Σ*𝑘 ∈ 𝐴𝐶 ∧ Σ*𝑘 ∈ 𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶)) |
28 | iccssxr 13403 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
29 | 23 | ralrimiva 3147 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ∈ (0[,]+∞)) |
30 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑘(𝐴 ∖ 𝐵) | |
31 | 30 | esumcl 32966 | . . . . 5 ⊢ (((𝐴 ∖ 𝐵) ∈ V ∧ ∀𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ∈ (0[,]+∞)) |
32 | 21, 29, 31 | syl2anc 585 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ∈ (0[,]+∞)) |
33 | 28, 32 | sselid 3979 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ∈ ℝ*) |
34 | 3 | ralrimiva 3147 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ (0[,]+∞)) |
35 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑘𝐴 | |
36 | 35 | esumcl 32966 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐶 ∈ (0[,]+∞)) |
37 | 2, 34, 36 | syl2anc 585 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ (0[,]+∞)) |
38 | 28, 37 | sselid 3979 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ ℝ*) |
39 | xrletri3 13129 | . . 3 ⊢ ((Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ∈ ℝ* ∧ Σ*𝑘 ∈ 𝐴𝐶 ∈ ℝ*) → (Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐶 ↔ (Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ≤ Σ*𝑘 ∈ 𝐴𝐶 ∧ Σ*𝑘 ∈ 𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶))) | |
40 | 33, 38, 39 | syl2anc 585 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐶 ↔ (Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ≤ Σ*𝑘 ∈ 𝐴𝐶 ∧ Σ*𝑘 ∈ 𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶))) |
41 | 27, 40 | mpbird 257 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ∀wral 3062 Vcvv 3475 ∖ cdif 3944 ∪ cun 3945 ⊆ wss 3947 class class class wbr 5147 (class class class)co 7404 0cc0 11106 +∞cpnf 11241 ℝ*cxr 11243 ≤ cle 11245 [,]cicc 13323 Σ*cesum 32963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-om 7851 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 df-pi 16012 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-ordt 17443 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-ps 18515 df-tsr 18516 df-plusf 18556 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-cntz 19175 df-cmn 19643 df-abl 19644 df-mgp 19980 df-ur 19997 df-ring 20049 df-cring 20050 df-subrg 20349 df-abv 20413 df-lmod 20461 df-scaf 20462 df-sra 20773 df-rgmod 20774 df-psmet 20921 df-xmet 20922 df-met 20923 df-bl 20924 df-mopn 20925 df-fbas 20926 df-fg 20927 df-cnfld 20930 df-top 22378 df-topon 22395 df-topsp 22417 df-bases 22431 df-cld 22505 df-ntr 22506 df-cls 22507 df-nei 22584 df-lp 22622 df-perf 22623 df-cn 22713 df-cnp 22714 df-haus 22801 df-tx 23048 df-hmeo 23241 df-fil 23332 df-fm 23424 df-flim 23425 df-flf 23426 df-tmd 23558 df-tgp 23559 df-tsms 23613 df-trg 23646 df-xms 23808 df-ms 23809 df-tms 23810 df-nm 24073 df-ngp 24074 df-nrg 24076 df-nlm 24077 df-ii 24375 df-cncf 24376 df-limc 25365 df-dv 25366 df-log 26047 df-esum 32964 |
This theorem is referenced by: omsmeas 33260 |
Copyright terms: Public domain | W3C validator |