| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpad2 | Structured version Visualization version GIF version | ||
| Description: Remove zeroes from an extended sum. (Contributed by Thierry Arnoux, 5-Jun-2020.) |
| Ref | Expression |
|---|---|
| esumpad.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumpad.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| esumpad.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
| esumpad.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 0) |
| Ref | Expression |
|---|---|
| esumpad2 | ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 2 | esumpad.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | esumpad.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
| 4 | difssd 4137 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) | |
| 5 | 1, 2, 3, 4 | esummono 34055 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ≤ Σ*𝑘 ∈ 𝐴𝐶) |
| 6 | esumpad.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 7 | unexg 7763 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 8 | 2, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
| 9 | elun 4153 | . . . . . 6 ⊢ (𝑘 ∈ (𝐴 ∪ 𝐵) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) | |
| 10 | esumpad.4 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 0) | |
| 11 | 0e0iccpnf 13499 | . . . . . . . 8 ⊢ 0 ∈ (0[,]+∞) | |
| 12 | 10, 11 | eqeltrdi 2849 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
| 13 | 3, 12 | jaodan 960 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
| 14 | 9, 13 | sylan2b 594 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
| 15 | ssun1 4178 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (𝐴 ∪ 𝐵)) |
| 17 | 1, 8, 14, 16 | esummono 34055 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶) |
| 18 | undif1 4476 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
| 19 | esumeq1 34035 | . . . . . 6 ⊢ (((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) → Σ*𝑘 ∈ ((𝐴 ∖ 𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶) | |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ Σ*𝑘 ∈ ((𝐴 ∖ 𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 |
| 21 | 2 | difexd 5331 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
| 22 | 4 | sselda 3983 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐵)) → 𝑘 ∈ 𝐴) |
| 23 | 22, 3 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
| 24 | 21, 6, 23, 10 | esumpad 34056 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ ((𝐴 ∖ 𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶) |
| 25 | 20, 24 | eqtr3id 2791 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶) |
| 26 | 17, 25 | breqtrd 5169 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶) |
| 27 | 5, 26 | jca 511 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ≤ Σ*𝑘 ∈ 𝐴𝐶 ∧ Σ*𝑘 ∈ 𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶)) |
| 28 | iccssxr 13470 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 29 | 23 | ralrimiva 3146 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ∈ (0[,]+∞)) |
| 30 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑘(𝐴 ∖ 𝐵) | |
| 31 | 30 | esumcl 34031 | . . . . 5 ⊢ (((𝐴 ∖ 𝐵) ∈ V ∧ ∀𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ∈ (0[,]+∞)) |
| 32 | 21, 29, 31 | syl2anc 584 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ∈ (0[,]+∞)) |
| 33 | 28, 32 | sselid 3981 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ∈ ℝ*) |
| 34 | 3 | ralrimiva 3146 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ (0[,]+∞)) |
| 35 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑘𝐴 | |
| 36 | 35 | esumcl 34031 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐶 ∈ (0[,]+∞)) |
| 37 | 2, 34, 36 | syl2anc 584 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ (0[,]+∞)) |
| 38 | 28, 37 | sselid 3981 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ ℝ*) |
| 39 | xrletri3 13196 | . . 3 ⊢ ((Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ∈ ℝ* ∧ Σ*𝑘 ∈ 𝐴𝐶 ∈ ℝ*) → (Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐶 ↔ (Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ≤ Σ*𝑘 ∈ 𝐴𝐶 ∧ Σ*𝑘 ∈ 𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶))) | |
| 40 | 33, 38, 39 | syl2anc 584 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐶 ↔ (Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 ≤ Σ*𝑘 ∈ 𝐴𝐶 ∧ Σ*𝑘 ∈ 𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶))) |
| 41 | 27, 40 | mpbird 257 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∖ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 ∖ cdif 3948 ∪ cun 3949 ⊆ wss 3951 class class class wbr 5143 (class class class)co 7431 0cc0 11155 +∞cpnf 11292 ℝ*cxr 11294 ≤ cle 11296 [,]cicc 13390 Σ*cesum 34028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ioc 13392 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 df-ef 16103 df-sin 16105 df-cos 16106 df-pi 16108 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-ordt 17546 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-ps 18611 df-tsr 18612 df-plusf 18652 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-subrng 20546 df-subrg 20570 df-abv 20810 df-lmod 20860 df-scaf 20861 df-sra 21172 df-rgmod 21173 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-lp 23144 df-perf 23145 df-cn 23235 df-cnp 23236 df-haus 23323 df-tx 23570 df-hmeo 23763 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-tmd 24080 df-tgp 24081 df-tsms 24135 df-trg 24168 df-xms 24330 df-ms 24331 df-tms 24332 df-nm 24595 df-ngp 24596 df-nrg 24598 df-nlm 24599 df-ii 24903 df-cncf 24904 df-limc 25901 df-dv 25902 df-log 26598 df-esum 34029 |
| This theorem is referenced by: omsmeas 34325 |
| Copyright terms: Public domain | W3C validator |