Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpad2 Structured version   Visualization version   GIF version

Theorem esumpad2 31597
Description: Remove zeroes from an extended sum. (Contributed by Thierry Arnoux, 5-Jun-2020.)
Hypotheses
Ref Expression
esumpad.1 (𝜑𝐴𝑉)
esumpad.2 (𝜑𝐵𝑊)
esumpad.3 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
esumpad.4 ((𝜑𝑘𝐵) → 𝐶 = 0)
Assertion
Ref Expression
esumpad2 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉   𝜑,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑊(𝑘)

Proof of Theorem esumpad2
StepHypRef Expression
1 nfv 1921 . . . 4 𝑘𝜑
2 esumpad.1 . . . 4 (𝜑𝐴𝑉)
3 esumpad.3 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
4 difssd 4024 . . . 4 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
51, 2, 3, 4esummono 31595 . . 3 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 ≤ Σ*𝑘𝐴𝐶)
6 esumpad.2 . . . . . 6 (𝜑𝐵𝑊)
7 unexg 7493 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
82, 6, 7syl2anc 587 . . . . 5 (𝜑 → (𝐴𝐵) ∈ V)
9 elun 4040 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
10 esumpad.4 . . . . . . . 8 ((𝜑𝑘𝐵) → 𝐶 = 0)
11 0e0iccpnf 12936 . . . . . . . 8 0 ∈ (0[,]+∞)
1210, 11eqeltrdi 2842 . . . . . . 7 ((𝜑𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
133, 12jaodan 957 . . . . . 6 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → 𝐶 ∈ (0[,]+∞))
149, 13sylan2b 597 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ (0[,]+∞))
15 ssun1 4063 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
1615a1i 11 . . . . 5 (𝜑𝐴 ⊆ (𝐴𝐵))
171, 8, 14, 16esummono 31595 . . . 4 (𝜑 → Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶)
18 undif1 4366 . . . . . 6 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
19 esumeq1 31575 . . . . . 6 (((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵) → Σ*𝑘 ∈ ((𝐴𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2018, 19ax-mp 5 . . . . 5 Σ*𝑘 ∈ ((𝐴𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶
212difexd 5198 . . . . . 6 (𝜑 → (𝐴𝐵) ∈ V)
224sselda 3878 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐴)
2322, 3syldan 594 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ (0[,]+∞))
2421, 6, 23, 10esumpad 31596 . . . . 5 (𝜑 → Σ*𝑘 ∈ ((𝐴𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2520, 24eqtr3id 2788 . . . 4 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2617, 25breqtrd 5057 . . 3 (𝜑 → Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶)
275, 26jca 515 . 2 (𝜑 → (Σ*𝑘 ∈ (𝐴𝐵)𝐶 ≤ Σ*𝑘𝐴𝐶 ∧ Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶))
28 iccssxr 12907 . . . 4 (0[,]+∞) ⊆ ℝ*
2923ralrimiva 3097 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ (0[,]+∞))
30 nfcv 2900 . . . . . 6 𝑘(𝐴𝐵)
3130esumcl 31571 . . . . 5 (((𝐴𝐵) ∈ V ∧ ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (𝐴𝐵)𝐶 ∈ (0[,]+∞))
3221, 29, 31syl2anc 587 . . . 4 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 ∈ (0[,]+∞))
3328, 32sseldi 3876 . . 3 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℝ*)
343ralrimiva 3097 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 ∈ (0[,]+∞))
35 nfcv 2900 . . . . . 6 𝑘𝐴
3635esumcl 31571 . . . . 5 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐶 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐶 ∈ (0[,]+∞))
372, 34, 36syl2anc 587 . . . 4 (𝜑 → Σ*𝑘𝐴𝐶 ∈ (0[,]+∞))
3828, 37sseldi 3876 . . 3 (𝜑 → Σ*𝑘𝐴𝐶 ∈ ℝ*)
39 xrletri3 12633 . . 3 ((Σ*𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℝ* ∧ Σ*𝑘𝐴𝐶 ∈ ℝ*) → (Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶 ↔ (Σ*𝑘 ∈ (𝐴𝐵)𝐶 ≤ Σ*𝑘𝐴𝐶 ∧ Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶)))
4033, 38, 39syl2anc 587 . 2 (𝜑 → (Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶 ↔ (Σ*𝑘 ∈ (𝐴𝐵)𝐶 ≤ Σ*𝑘𝐴𝐶 ∧ Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶)))
4127, 40mpbird 260 1 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wcel 2114  wral 3054  Vcvv 3399  cdif 3841  cun 3842  wss 3844   class class class wbr 5031  (class class class)co 7173  0cc0 10618  +∞cpnf 10753  *cxr 10755  cle 10757  [,]cicc 12827  Σ*cesum 31568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-inf2 9180  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696  ax-addf 10697  ax-mulf 10698
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-of 7428  df-om 7603  df-1st 7717  df-2nd 7718  df-supp 7860  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-2o 8135  df-er 8323  df-map 8442  df-pm 8443  df-ixp 8511  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-fsupp 8910  df-fi 8951  df-sup 8982  df-inf 8983  df-oi 9050  df-card 9444  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-4 11784  df-5 11785  df-6 11786  df-7 11787  df-8 11788  df-9 11789  df-n0 11980  df-z 12066  df-dec 12183  df-uz 12328  df-q 12434  df-rp 12476  df-xneg 12593  df-xadd 12594  df-xmul 12595  df-ioo 12828  df-ioc 12829  df-ico 12830  df-icc 12831  df-fz 12985  df-fzo 13128  df-fl 13256  df-mod 13332  df-seq 13464  df-exp 13525  df-fac 13729  df-bc 13758  df-hash 13786  df-shft 14519  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688  df-limsup 14921  df-clim 14938  df-rlim 14939  df-sum 15139  df-ef 15516  df-sin 15518  df-cos 15519  df-pi 15521  df-struct 16591  df-ndx 16592  df-slot 16593  df-base 16595  df-sets 16596  df-ress 16597  df-plusg 16684  df-mulr 16685  df-starv 16686  df-sca 16687  df-vsca 16688  df-ip 16689  df-tset 16690  df-ple 16691  df-ds 16693  df-unif 16694  df-hom 16695  df-cco 16696  df-rest 16802  df-topn 16803  df-0g 16821  df-gsum 16822  df-topgen 16823  df-pt 16824  df-prds 16827  df-ordt 16880  df-xrs 16881  df-qtop 16886  df-imas 16887  df-xps 16889  df-mre 16963  df-mrc 16964  df-acs 16966  df-ps 17929  df-tsr 17930  df-plusf 17970  df-mgm 17971  df-sgrp 18020  df-mnd 18031  df-mhm 18075  df-submnd 18076  df-grp 18225  df-minusg 18226  df-sbg 18227  df-mulg 18346  df-subg 18397  df-cntz 18568  df-cmn 19029  df-abl 19030  df-mgp 19362  df-ur 19374  df-ring 19421  df-cring 19422  df-subrg 19655  df-abv 19710  df-lmod 19758  df-scaf 19759  df-sra 20066  df-rgmod 20067  df-psmet 20212  df-xmet 20213  df-met 20214  df-bl 20215  df-mopn 20216  df-fbas 20217  df-fg 20218  df-cnfld 20221  df-top 21648  df-topon 21665  df-topsp 21687  df-bases 21700  df-cld 21773  df-ntr 21774  df-cls 21775  df-nei 21852  df-lp 21890  df-perf 21891  df-cn 21981  df-cnp 21982  df-haus 22069  df-tx 22316  df-hmeo 22509  df-fil 22600  df-fm 22692  df-flim 22693  df-flf 22694  df-tmd 22826  df-tgp 22827  df-tsms 22881  df-trg 22914  df-xms 23076  df-ms 23077  df-tms 23078  df-nm 23338  df-ngp 23339  df-nrg 23341  df-nlm 23342  df-ii 23632  df-cncf 23633  df-limc 24621  df-dv 24622  df-log 25303  df-esum 31569
This theorem is referenced by:  omsmeas  31863
  Copyright terms: Public domain W3C validator