| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eucalgval2 | Structured version Visualization version GIF version | ||
| Description: The value of the step function 𝐸 for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
| Ref | Expression |
|---|---|
| eucalgval.1 | ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
| Ref | Expression |
|---|---|
| eucalgval2 | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → 𝑦 = 𝑁) | |
| 2 | 1 | eqeq1d 2733 | . . 3 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0)) |
| 3 | opeq12 4827 | . . 3 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → 〈𝑥, 𝑦〉 = 〈𝑀, 𝑁〉) | |
| 4 | oveq12 7355 | . . . 4 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → (𝑥 mod 𝑦) = (𝑀 mod 𝑁)) | |
| 5 | 1, 4 | opeq12d 4833 | . . 3 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → 〈𝑦, (𝑥 mod 𝑦)〉 = 〈𝑁, (𝑀 mod 𝑁)〉) |
| 6 | 2, 3, 5 | ifbieq12d 4504 | . 2 ⊢ ((𝑥 = 𝑀 ∧ 𝑦 = 𝑁) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
| 7 | eucalgval.1 | . 2 ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) | |
| 8 | opex 5404 | . . 3 ⊢ 〈𝑀, 𝑁〉 ∈ V | |
| 9 | opex 5404 | . . 3 ⊢ 〈𝑁, (𝑀 mod 𝑁)〉 ∈ V | |
| 10 | 8, 9 | ifex 4526 | . 2 ⊢ if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉) ∈ V |
| 11 | 6, 7, 10 | ovmpoa 7501 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ifcif 4475 〈cop 4582 (class class class)co 7346 ∈ cmpo 7348 0cc0 11003 ℕ0cn0 12378 mod cmo 13770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: eucalgval 16490 |
| Copyright terms: Public domain | W3C validator |