MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalgval Structured version   Visualization version   GIF version

Theorem eucalgval 16332
Description: Euclid's Algorithm eucalg 16337 computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0.

The value of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalgval (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalgval
StepHypRef Expression
1 df-ov 7310 . . 3 ((1st𝑋)𝐸(2nd𝑋)) = (𝐸‘⟨(1st𝑋), (2nd𝑋)⟩)
2 xp1st 7895 . . . 4 (𝑋 ∈ (ℕ0 × ℕ0) → (1st𝑋) ∈ ℕ0)
3 xp2nd 7896 . . . 4 (𝑋 ∈ (ℕ0 × ℕ0) → (2nd𝑋) ∈ ℕ0)
4 eucalgval.1 . . . . 5 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
54eucalgval2 16331 . . . 4 (((1st𝑋) ∈ ℕ0 ∧ (2nd𝑋) ∈ ℕ0) → ((1st𝑋)𝐸(2nd𝑋)) = if((2nd𝑋) = 0, ⟨(1st𝑋), (2nd𝑋)⟩, ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩))
62, 3, 5syl2anc 585 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → ((1st𝑋)𝐸(2nd𝑋)) = if((2nd𝑋) = 0, ⟨(1st𝑋), (2nd𝑋)⟩, ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩))
71, 6eqtr3id 2790 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸‘⟨(1st𝑋), (2nd𝑋)⟩) = if((2nd𝑋) = 0, ⟨(1st𝑋), (2nd𝑋)⟩, ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩))
8 1st2nd2 7902 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
98fveq2d 6808 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = (𝐸‘⟨(1st𝑋), (2nd𝑋)⟩))
108fveq2d 6808 . . . . 5 (𝑋 ∈ (ℕ0 × ℕ0) → ( mod ‘𝑋) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩))
11 df-ov 7310 . . . . 5 ((1st𝑋) mod (2nd𝑋)) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩)
1210, 11eqtr4di 2794 . . . 4 (𝑋 ∈ (ℕ0 × ℕ0) → ( mod ‘𝑋) = ((1st𝑋) mod (2nd𝑋)))
1312opeq2d 4816 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → ⟨(2nd𝑋), ( mod ‘𝑋)⟩ = ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩)
148, 13ifeq12d 4486 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = if((2nd𝑋) = 0, ⟨(1st𝑋), (2nd𝑋)⟩, ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩))
157, 9, 143eqtr4d 2786 1 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  ifcif 4465  cop 4571   × cxp 5598  cfv 6458  (class class class)co 7307  cmpo 7309  1st c1st 7861  2nd c2nd 7862  0cc0 10917  0cn0 12279   mod cmo 13635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-iota 6410  df-fun 6460  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864
This theorem is referenced by:  eucalginv  16334  eucalglt  16335
  Copyright terms: Public domain W3C validator