MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalgval Structured version   Visualization version   GIF version

Theorem eucalgval 16518
Description: Euclid's Algorithm eucalg 16523 computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0.

The value of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalgval (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalgval
StepHypRef Expression
1 df-ov 7411 . . 3 ((1st𝑋)𝐸(2nd𝑋)) = (𝐸‘⟨(1st𝑋), (2nd𝑋)⟩)
2 xp1st 8006 . . . 4 (𝑋 ∈ (ℕ0 × ℕ0) → (1st𝑋) ∈ ℕ0)
3 xp2nd 8007 . . . 4 (𝑋 ∈ (ℕ0 × ℕ0) → (2nd𝑋) ∈ ℕ0)
4 eucalgval.1 . . . . 5 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
54eucalgval2 16517 . . . 4 (((1st𝑋) ∈ ℕ0 ∧ (2nd𝑋) ∈ ℕ0) → ((1st𝑋)𝐸(2nd𝑋)) = if((2nd𝑋) = 0, ⟨(1st𝑋), (2nd𝑋)⟩, ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩))
62, 3, 5syl2anc 584 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → ((1st𝑋)𝐸(2nd𝑋)) = if((2nd𝑋) = 0, ⟨(1st𝑋), (2nd𝑋)⟩, ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩))
71, 6eqtr3id 2786 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸‘⟨(1st𝑋), (2nd𝑋)⟩) = if((2nd𝑋) = 0, ⟨(1st𝑋), (2nd𝑋)⟩, ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩))
8 1st2nd2 8013 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
98fveq2d 6895 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = (𝐸‘⟨(1st𝑋), (2nd𝑋)⟩))
108fveq2d 6895 . . . . 5 (𝑋 ∈ (ℕ0 × ℕ0) → ( mod ‘𝑋) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩))
11 df-ov 7411 . . . . 5 ((1st𝑋) mod (2nd𝑋)) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩)
1210, 11eqtr4di 2790 . . . 4 (𝑋 ∈ (ℕ0 × ℕ0) → ( mod ‘𝑋) = ((1st𝑋) mod (2nd𝑋)))
1312opeq2d 4880 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → ⟨(2nd𝑋), ( mod ‘𝑋)⟩ = ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩)
148, 13ifeq12d 4549 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = if((2nd𝑋) = 0, ⟨(1st𝑋), (2nd𝑋)⟩, ⟨(2nd𝑋), ((1st𝑋) mod (2nd𝑋))⟩))
157, 9, 143eqtr4d 2782 1 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  ifcif 4528  cop 4634   × cxp 5674  cfv 6543  (class class class)co 7408  cmpo 7410  1st c1st 7972  2nd c2nd 7973  0cc0 11109  0cn0 12471   mod cmo 13833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975
This theorem is referenced by:  eucalginv  16520  eucalglt  16521
  Copyright terms: Public domain W3C validator