MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algfx Structured version   Visualization version   GIF version

Theorem algfx 16604
Description: If 𝐹 reaches a fixed point when the countdown function 𝐶 reaches 0, 𝐹 remains fixed after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1 𝐹:𝑆𝑆
algcvga.2 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
algcvga.3 𝐶:𝑆⟶ℕ0
algcvga.4 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
algcvga.5 𝑁 = (𝐶𝐴)
algfx.6 (𝑧𝑆 → ((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧))
Assertion
Ref Expression
algfx (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁)))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆   𝑧,𝐾   𝑧,𝑁
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem algfx
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . . 4 𝑁 = (𝐶𝐴)
2 algcvga.3 . . . . 5 𝐶:𝑆⟶ℕ0
32ffvelcdmi 7078 . . . 4 (𝐴𝑆 → (𝐶𝐴) ∈ ℕ0)
41, 3eqeltrid 2839 . . 3 (𝐴𝑆𝑁 ∈ ℕ0)
54nn0zd 12619 . 2 (𝐴𝑆𝑁 ∈ ℤ)
6 uzval 12859 . . . . . . 7 (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑧 ∈ ℤ ∣ 𝑁𝑧})
76eleq2d 2821 . . . . . 6 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) ↔ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
87pm5.32i 574 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (ℤ𝑁)) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
9 fveqeq2 6890 . . . . . . 7 (𝑚 = 𝑁 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝑁) = (𝑅𝑁)))
109imbi2d 340 . . . . . 6 (𝑚 = 𝑁 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁))))
11 fveqeq2 6890 . . . . . . 7 (𝑚 = 𝑘 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝑘) = (𝑅𝑁)))
1211imbi2d 340 . . . . . 6 (𝑚 = 𝑘 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝑘) = (𝑅𝑁))))
13 fveqeq2 6890 . . . . . . 7 (𝑚 = (𝑘 + 1) → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅‘(𝑘 + 1)) = (𝑅𝑁)))
1413imbi2d 340 . . . . . 6 (𝑚 = (𝑘 + 1) → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
15 fveqeq2 6890 . . . . . . 7 (𝑚 = 𝐾 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝐾) = (𝑅𝑁)))
1615imbi2d 340 . . . . . 6 (𝑚 = 𝐾 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁))))
17 eqidd 2737 . . . . . . 7 (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁))
1817a1i 11 . . . . . 6 (𝑁 ∈ ℤ → (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁)))
196eleq2d 2821 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ𝑁) ↔ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
2019pm5.32i 574 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑁)) ↔ (𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
21 eluznn0 12938 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
224, 21sylan 580 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
23 nn0uz 12899 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
24 algcvga.2 . . . . . . . . . . . . . . 15 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
25 0zd 12605 . . . . . . . . . . . . . . 15 (𝐴𝑆 → 0 ∈ ℤ)
26 id 22 . . . . . . . . . . . . . . 15 (𝐴𝑆𝐴𝑆)
27 algcvga.1 . . . . . . . . . . . . . . . 16 𝐹:𝑆𝑆
2827a1i 11 . . . . . . . . . . . . . . 15 (𝐴𝑆𝐹:𝑆𝑆)
2923, 24, 25, 26, 28algrp1 16598 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
3022, 29syldan 591 . . . . . . . . . . . . 13 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
3123, 24, 25, 26, 28algrf 16597 . . . . . . . . . . . . . . . 16 (𝐴𝑆𝑅:ℕ0𝑆)
3231ffvelcdmda 7079 . . . . . . . . . . . . . . 15 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
3322, 32syldan 591 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅𝑘) ∈ 𝑆)
34 algcvga.4 . . . . . . . . . . . . . . . 16 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
3527, 24, 2, 34, 1algcvga 16603 . . . . . . . . . . . . . . 15 (𝐴𝑆 → (𝑘 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝑘)) = 0))
3635imp 406 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝐶‘(𝑅𝑘)) = 0)
37 fveqeq2 6890 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑅𝑘) → ((𝐶𝑧) = 0 ↔ (𝐶‘(𝑅𝑘)) = 0))
38 fveq2 6881 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑅𝑘) → (𝐹𝑧) = (𝐹‘(𝑅𝑘)))
39 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑅𝑘) → 𝑧 = (𝑅𝑘))
4038, 39eqeq12d 2752 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑅𝑘) → ((𝐹𝑧) = 𝑧 ↔ (𝐹‘(𝑅𝑘)) = (𝑅𝑘)))
4137, 40imbi12d 344 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅𝑘) → (((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧) ↔ ((𝐶‘(𝑅𝑘)) = 0 → (𝐹‘(𝑅𝑘)) = (𝑅𝑘))))
42 algfx.6 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧))
4341, 42vtoclga 3561 . . . . . . . . . . . . . 14 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝑅𝑘)) = 0 → (𝐹‘(𝑅𝑘)) = (𝑅𝑘)))
4433, 36, 43sylc 65 . . . . . . . . . . . . 13 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝐹‘(𝑅𝑘)) = (𝑅𝑘))
4530, 44eqtrd 2771 . . . . . . . . . . . 12 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅‘(𝑘 + 1)) = (𝑅𝑘))
4645eqeq1d 2738 . . . . . . . . . . 11 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → ((𝑅‘(𝑘 + 1)) = (𝑅𝑁) ↔ (𝑅𝑘) = (𝑅𝑁)))
4746biimprd 248 . . . . . . . . . 10 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁)))
4847expcom 413 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
4948adantl 481 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑁)) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5020, 49sylbir 235 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5150a2d 29 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → ((𝐴𝑆 → (𝑅𝑘) = (𝑅𝑁)) → (𝐴𝑆 → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5210, 12, 14, 16, 18, 51uzind3 12692 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁)))
538, 52sylbi 217 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (ℤ𝑁)) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁)))
5453ex 412 . . 3 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁))))
5554com3r 87 . 2 (𝐴𝑆 → (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁))))
565, 55mpd 15 1 (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  {crab 3420  {csn 4606   class class class wbr 5124   × cxp 5657  ccom 5663  wf 6532  cfv 6536  (class class class)co 7410  1st c1st 7991  0cc0 11134  1c1 11135   + caddc 11137   < clt 11274  cle 11275  0cn0 12506  cz 12593  cuz 12857  seqcseq 14024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator