MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algfx Structured version   Visualization version   GIF version

Theorem algfx 16491
Description: If 𝐹 reaches a fixed point when the countdown function 𝐶 reaches 0, 𝐹 remains fixed after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1 𝐹:𝑆𝑆
algcvga.2 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
algcvga.3 𝐶:𝑆⟶ℕ0
algcvga.4 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
algcvga.5 𝑁 = (𝐶𝐴)
algfx.6 (𝑧𝑆 → ((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧))
Assertion
Ref Expression
algfx (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁)))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆   𝑧,𝐾   𝑧,𝑁
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem algfx
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . . 4 𝑁 = (𝐶𝐴)
2 algcvga.3 . . . . 5 𝐶:𝑆⟶ℕ0
32ffvelcdmi 7016 . . . 4 (𝐴𝑆 → (𝐶𝐴) ∈ ℕ0)
41, 3eqeltrid 2835 . . 3 (𝐴𝑆𝑁 ∈ ℕ0)
54nn0zd 12494 . 2 (𝐴𝑆𝑁 ∈ ℤ)
6 uzval 12734 . . . . . . 7 (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑧 ∈ ℤ ∣ 𝑁𝑧})
76eleq2d 2817 . . . . . 6 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) ↔ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
87pm5.32i 574 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (ℤ𝑁)) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
9 fveqeq2 6831 . . . . . . 7 (𝑚 = 𝑁 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝑁) = (𝑅𝑁)))
109imbi2d 340 . . . . . 6 (𝑚 = 𝑁 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁))))
11 fveqeq2 6831 . . . . . . 7 (𝑚 = 𝑘 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝑘) = (𝑅𝑁)))
1211imbi2d 340 . . . . . 6 (𝑚 = 𝑘 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝑘) = (𝑅𝑁))))
13 fveqeq2 6831 . . . . . . 7 (𝑚 = (𝑘 + 1) → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅‘(𝑘 + 1)) = (𝑅𝑁)))
1413imbi2d 340 . . . . . 6 (𝑚 = (𝑘 + 1) → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
15 fveqeq2 6831 . . . . . . 7 (𝑚 = 𝐾 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝐾) = (𝑅𝑁)))
1615imbi2d 340 . . . . . 6 (𝑚 = 𝐾 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁))))
17 eqidd 2732 . . . . . . 7 (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁))
1817a1i 11 . . . . . 6 (𝑁 ∈ ℤ → (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁)))
196eleq2d 2817 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ𝑁) ↔ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
2019pm5.32i 574 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑁)) ↔ (𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
21 eluznn0 12815 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
224, 21sylan 580 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
23 nn0uz 12774 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
24 algcvga.2 . . . . . . . . . . . . . . 15 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
25 0zd 12480 . . . . . . . . . . . . . . 15 (𝐴𝑆 → 0 ∈ ℤ)
26 id 22 . . . . . . . . . . . . . . 15 (𝐴𝑆𝐴𝑆)
27 algcvga.1 . . . . . . . . . . . . . . . 16 𝐹:𝑆𝑆
2827a1i 11 . . . . . . . . . . . . . . 15 (𝐴𝑆𝐹:𝑆𝑆)
2923, 24, 25, 26, 28algrp1 16485 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
3022, 29syldan 591 . . . . . . . . . . . . 13 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
3123, 24, 25, 26, 28algrf 16484 . . . . . . . . . . . . . . . 16 (𝐴𝑆𝑅:ℕ0𝑆)
3231ffvelcdmda 7017 . . . . . . . . . . . . . . 15 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
3322, 32syldan 591 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅𝑘) ∈ 𝑆)
34 algcvga.4 . . . . . . . . . . . . . . . 16 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
3527, 24, 2, 34, 1algcvga 16490 . . . . . . . . . . . . . . 15 (𝐴𝑆 → (𝑘 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝑘)) = 0))
3635imp 406 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝐶‘(𝑅𝑘)) = 0)
37 fveqeq2 6831 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑅𝑘) → ((𝐶𝑧) = 0 ↔ (𝐶‘(𝑅𝑘)) = 0))
38 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑅𝑘) → (𝐹𝑧) = (𝐹‘(𝑅𝑘)))
39 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑅𝑘) → 𝑧 = (𝑅𝑘))
4038, 39eqeq12d 2747 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑅𝑘) → ((𝐹𝑧) = 𝑧 ↔ (𝐹‘(𝑅𝑘)) = (𝑅𝑘)))
4137, 40imbi12d 344 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅𝑘) → (((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧) ↔ ((𝐶‘(𝑅𝑘)) = 0 → (𝐹‘(𝑅𝑘)) = (𝑅𝑘))))
42 algfx.6 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧))
4341, 42vtoclga 3528 . . . . . . . . . . . . . 14 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝑅𝑘)) = 0 → (𝐹‘(𝑅𝑘)) = (𝑅𝑘)))
4433, 36, 43sylc 65 . . . . . . . . . . . . 13 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝐹‘(𝑅𝑘)) = (𝑅𝑘))
4530, 44eqtrd 2766 . . . . . . . . . . . 12 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅‘(𝑘 + 1)) = (𝑅𝑘))
4645eqeq1d 2733 . . . . . . . . . . 11 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → ((𝑅‘(𝑘 + 1)) = (𝑅𝑁) ↔ (𝑅𝑘) = (𝑅𝑁)))
4746biimprd 248 . . . . . . . . . 10 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁)))
4847expcom 413 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
4948adantl 481 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑁)) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5020, 49sylbir 235 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5150a2d 29 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → ((𝐴𝑆 → (𝑅𝑘) = (𝑅𝑁)) → (𝐴𝑆 → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5210, 12, 14, 16, 18, 51uzind3 12567 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁)))
538, 52sylbi 217 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (ℤ𝑁)) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁)))
5453ex 412 . . 3 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁))))
5554com3r 87 . 2 (𝐴𝑆 → (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁))))
565, 55mpd 15 1 (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  {crab 3395  {csn 4573   class class class wbr 5089   × cxp 5612  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  0cn0 12381  cz 12468  cuz 12732  seqcseq 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator