| Step | Hyp | Ref
| Expression |
| 1 | | algcvga.5 |
. . . 4
⊢ 𝑁 = (𝐶‘𝐴) |
| 2 | | algcvga.3 |
. . . . 5
⊢ 𝐶:𝑆⟶ℕ0 |
| 3 | 2 | ffvelcdmi 7084 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → (𝐶‘𝐴) ∈
ℕ0) |
| 4 | 1, 3 | eqeltrid 2837 |
. . 3
⊢ (𝐴 ∈ 𝑆 → 𝑁 ∈
ℕ0) |
| 5 | 4 | nn0zd 12623 |
. 2
⊢ (𝐴 ∈ 𝑆 → 𝑁 ∈ ℤ) |
| 6 | | uzval 12863 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ →
(ℤ≥‘𝑁) = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) |
| 7 | 6 | eleq2d 2819 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → (𝐾 ∈
(ℤ≥‘𝑁) ↔ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) |
| 8 | 7 | pm5.32i 574 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈
(ℤ≥‘𝑁)) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) |
| 9 | | fveqeq2 6896 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → ((𝑅‘𝑚) = (𝑅‘𝑁) ↔ (𝑅‘𝑁) = (𝑅‘𝑁))) |
| 10 | 9 | imbi2d 340 |
. . . . . 6
⊢ (𝑚 = 𝑁 → ((𝐴 ∈ 𝑆 → (𝑅‘𝑚) = (𝑅‘𝑁)) ↔ (𝐴 ∈ 𝑆 → (𝑅‘𝑁) = (𝑅‘𝑁)))) |
| 11 | | fveqeq2 6896 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → ((𝑅‘𝑚) = (𝑅‘𝑁) ↔ (𝑅‘𝑘) = (𝑅‘𝑁))) |
| 12 | 11 | imbi2d 340 |
. . . . . 6
⊢ (𝑚 = 𝑘 → ((𝐴 ∈ 𝑆 → (𝑅‘𝑚) = (𝑅‘𝑁)) ↔ (𝐴 ∈ 𝑆 → (𝑅‘𝑘) = (𝑅‘𝑁)))) |
| 13 | | fveqeq2 6896 |
. . . . . . 7
⊢ (𝑚 = (𝑘 + 1) → ((𝑅‘𝑚) = (𝑅‘𝑁) ↔ (𝑅‘(𝑘 + 1)) = (𝑅‘𝑁))) |
| 14 | 13 | imbi2d 340 |
. . . . . 6
⊢ (𝑚 = (𝑘 + 1) → ((𝐴 ∈ 𝑆 → (𝑅‘𝑚) = (𝑅‘𝑁)) ↔ (𝐴 ∈ 𝑆 → (𝑅‘(𝑘 + 1)) = (𝑅‘𝑁)))) |
| 15 | | fveqeq2 6896 |
. . . . . . 7
⊢ (𝑚 = 𝐾 → ((𝑅‘𝑚) = (𝑅‘𝑁) ↔ (𝑅‘𝐾) = (𝑅‘𝑁))) |
| 16 | 15 | imbi2d 340 |
. . . . . 6
⊢ (𝑚 = 𝐾 → ((𝐴 ∈ 𝑆 → (𝑅‘𝑚) = (𝑅‘𝑁)) ↔ (𝐴 ∈ 𝑆 → (𝑅‘𝐾) = (𝑅‘𝑁)))) |
| 17 | | eqidd 2735 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑆 → (𝑅‘𝑁) = (𝑅‘𝑁)) |
| 18 | 17 | a1i 11 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → (𝐴 ∈ 𝑆 → (𝑅‘𝑁) = (𝑅‘𝑁))) |
| 19 | 6 | eleq2d 2819 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑘 ∈
(ℤ≥‘𝑁) ↔ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) |
| 20 | 19 | pm5.32i 574 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈
(ℤ≥‘𝑁)) ↔ (𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) |
| 21 | | eluznn0 12942 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘𝑁)) → 𝑘 ∈ ℕ0) |
| 22 | 4, 21 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ ℕ0) |
| 23 | | nn0uz 12903 |
. . . . . . . . . . . . . . 15
⊢
ℕ0 = (ℤ≥‘0) |
| 24 | | algcvga.2 |
. . . . . . . . . . . . . . 15
⊢ 𝑅 = seq0((𝐹 ∘ 1st ),
(ℕ0 × {𝐴})) |
| 25 | | 0zd 12609 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑆 → 0 ∈ ℤ) |
| 26 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆) |
| 27 | | algcvga.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝐹:𝑆⟶𝑆 |
| 28 | 27 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑆 → 𝐹:𝑆⟶𝑆) |
| 29 | 23, 24, 25, 26, 28 | algrp1 16594 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅‘𝑘))) |
| 30 | 22, 29 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅‘𝑘))) |
| 31 | 23, 24, 25, 26, 28 | algrf 16593 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ 𝑆 → 𝑅:ℕ0⟶𝑆) |
| 32 | 31 | ffvelcdmda 7085 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘𝑘) ∈ 𝑆) |
| 33 | 22, 32 | syldan 591 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝑅‘𝑘) ∈ 𝑆) |
| 34 | | algcvga.4 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑆 → ((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧))) |
| 35 | 27, 24, 2, 34, 1 | algcvga 16599 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑆 → (𝑘 ∈ (ℤ≥‘𝑁) → (𝐶‘(𝑅‘𝑘)) = 0)) |
| 36 | 35 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐶‘(𝑅‘𝑘)) = 0) |
| 37 | | fveqeq2 6896 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑅‘𝑘) → ((𝐶‘𝑧) = 0 ↔ (𝐶‘(𝑅‘𝑘)) = 0)) |
| 38 | | fveq2 6887 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑅‘𝑘) → (𝐹‘𝑧) = (𝐹‘(𝑅‘𝑘))) |
| 39 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (𝑅‘𝑘) → 𝑧 = (𝑅‘𝑘)) |
| 40 | 38, 39 | eqeq12d 2750 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑅‘𝑘) → ((𝐹‘𝑧) = 𝑧 ↔ (𝐹‘(𝑅‘𝑘)) = (𝑅‘𝑘))) |
| 41 | 37, 40 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑅‘𝑘) → (((𝐶‘𝑧) = 0 → (𝐹‘𝑧) = 𝑧) ↔ ((𝐶‘(𝑅‘𝑘)) = 0 → (𝐹‘(𝑅‘𝑘)) = (𝑅‘𝑘)))) |
| 42 | | algfx.6 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑆 → ((𝐶‘𝑧) = 0 → (𝐹‘𝑧) = 𝑧)) |
| 43 | 41, 42 | vtoclga 3561 |
. . . . . . . . . . . . . 14
⊢ ((𝑅‘𝑘) ∈ 𝑆 → ((𝐶‘(𝑅‘𝑘)) = 0 → (𝐹‘(𝑅‘𝑘)) = (𝑅‘𝑘))) |
| 44 | 33, 36, 43 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘(𝑅‘𝑘)) = (𝑅‘𝑘)) |
| 45 | 30, 44 | eqtrd 2769 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝑅‘(𝑘 + 1)) = (𝑅‘𝑘)) |
| 46 | 45 | eqeq1d 2736 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝑅‘(𝑘 + 1)) = (𝑅‘𝑁) ↔ (𝑅‘𝑘) = (𝑅‘𝑁))) |
| 47 | 46 | biimprd 248 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝑅‘𝑘) = (𝑅‘𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅‘𝑁))) |
| 48 | 47 | expcom 413 |
. . . . . . . . 9
⊢ (𝑘 ∈
(ℤ≥‘𝑁) → (𝐴 ∈ 𝑆 → ((𝑅‘𝑘) = (𝑅‘𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅‘𝑁)))) |
| 49 | 48 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈
(ℤ≥‘𝑁)) → (𝐴 ∈ 𝑆 → ((𝑅‘𝑘) = (𝑅‘𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅‘𝑁)))) |
| 50 | 20, 49 | sylbir 235 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) → (𝐴 ∈ 𝑆 → ((𝑅‘𝑘) = (𝑅‘𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅‘𝑁)))) |
| 51 | 50 | a2d 29 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) → ((𝐴 ∈ 𝑆 → (𝑅‘𝑘) = (𝑅‘𝑁)) → (𝐴 ∈ 𝑆 → (𝑅‘(𝑘 + 1)) = (𝑅‘𝑁)))) |
| 52 | 10, 12, 14, 16, 18, 51 | uzind3 12696 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) → (𝐴 ∈ 𝑆 → (𝑅‘𝐾) = (𝑅‘𝑁))) |
| 53 | 8, 52 | sylbi 217 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈
(ℤ≥‘𝑁)) → (𝐴 ∈ 𝑆 → (𝑅‘𝐾) = (𝑅‘𝑁))) |
| 54 | 53 | ex 412 |
. . 3
⊢ (𝑁 ∈ ℤ → (𝐾 ∈
(ℤ≥‘𝑁) → (𝐴 ∈ 𝑆 → (𝑅‘𝐾) = (𝑅‘𝑁)))) |
| 55 | 54 | com3r 87 |
. 2
⊢ (𝐴 ∈ 𝑆 → (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ≥‘𝑁) → (𝑅‘𝐾) = (𝑅‘𝑁)))) |
| 56 | 5, 55 | mpd 15 |
1
⊢ (𝐴 ∈ 𝑆 → (𝐾 ∈ (ℤ≥‘𝑁) → (𝑅‘𝐾) = (𝑅‘𝑁))) |