| Step | Hyp | Ref
| Expression |
| 1 | | poimir.0 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 2 | | poimir.i |
. . 3
⊢ 𝐼 = ((0[,]1) ↑m
(1...𝑁)) |
| 3 | | poimir.r |
. . 3
⊢ 𝑅 =
(∏t‘((1...𝑁) × {(topGen‘ran
(,))})) |
| 4 | | elmapfn 8905 |
. . . . . . . 8
⊢ (𝑥 ∈ ((0[,]1)
↑m (1...𝑁))
→ 𝑥 Fn (1...𝑁)) |
| 5 | 4, 2 | eleq2s 2859 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐼 → 𝑥 Fn (1...𝑁)) |
| 6 | 5 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 Fn (1...𝑁)) |
| 7 | | broucube.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn (𝑅 ↾t 𝐼))) |
| 8 | | ovex 7464 |
. . . . . . . . . . . . 13
⊢
(1...𝑁) ∈
V |
| 9 | | retopon 24784 |
. . . . . . . . . . . . 13
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| 10 | 3 | pttoponconst 23605 |
. . . . . . . . . . . . 13
⊢
(((1...𝑁) ∈ V
∧ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) → 𝑅 ∈ (TopOn‘(ℝ
↑m (1...𝑁)))) |
| 11 | 8, 9, 10 | mp2an 692 |
. . . . . . . . . . . 12
⊢ 𝑅 ∈ (TopOn‘(ℝ
↑m (1...𝑁))) |
| 12 | | reex 11246 |
. . . . . . . . . . . . . 14
⊢ ℝ
∈ V |
| 13 | | unitssre 13539 |
. . . . . . . . . . . . . 14
⊢ (0[,]1)
⊆ ℝ |
| 14 | | mapss 8929 |
. . . . . . . . . . . . . 14
⊢ ((ℝ
∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑m
(1...𝑁)) ⊆ (ℝ
↑m (1...𝑁))) |
| 15 | 12, 13, 14 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ ((0[,]1)
↑m (1...𝑁))
⊆ (ℝ ↑m (1...𝑁)) |
| 16 | 2, 15 | eqsstri 4030 |
. . . . . . . . . . . 12
⊢ 𝐼 ⊆ (ℝ
↑m (1...𝑁)) |
| 17 | | resttopon 23169 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ (TopOn‘(ℝ
↑m (1...𝑁))) ∧ 𝐼 ⊆ (ℝ ↑m
(1...𝑁))) → (𝑅 ↾t 𝐼) ∈ (TopOn‘𝐼)) |
| 18 | 11, 16, 17 | mp2an 692 |
. . . . . . . . . . 11
⊢ (𝑅 ↾t 𝐼) ∈ (TopOn‘𝐼) |
| 19 | 18 | toponunii 22922 |
. . . . . . . . . 10
⊢ 𝐼 = ∪
(𝑅 ↾t
𝐼) |
| 20 | 19, 19 | cnf 23254 |
. . . . . . . . 9
⊢ (𝐹 ∈ ((𝑅 ↾t 𝐼) Cn (𝑅 ↾t 𝐼)) → 𝐹:𝐼⟶𝐼) |
| 21 | 7, 20 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐼⟶𝐼) |
| 22 | 21 | ffvelcdmda 7104 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ 𝐼) |
| 23 | | elmapfn 8905 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) ∈ ((0[,]1) ↑m
(1...𝑁)) → (𝐹‘𝑥) Fn (1...𝑁)) |
| 24 | 23, 2 | eleq2s 2859 |
. . . . . . 7
⊢ ((𝐹‘𝑥) ∈ 𝐼 → (𝐹‘𝑥) Fn (1...𝑁)) |
| 25 | 22, 24 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) Fn (1...𝑁)) |
| 26 | | ovexd 7466 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (1...𝑁) ∈ V) |
| 27 | | inidm 4227 |
. . . . . 6
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
| 28 | | eqidd 2738 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑥‘𝑛) = (𝑥‘𝑛)) |
| 29 | | eqidd 2738 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘𝑥)‘𝑛) = ((𝐹‘𝑥)‘𝑛)) |
| 30 | 6, 25, 26, 26, 27, 28, 29 | offval 7706 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑥 ∘f − (𝐹‘𝑥)) = (𝑛 ∈ (1...𝑁) ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛)))) |
| 31 | 30 | mpteq2dva 5242 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))))) |
| 32 | 18 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑅 ↾t 𝐼) ∈ (TopOn‘𝐼)) |
| 33 | | ovexd 7466 |
. . . . 5
⊢ (𝜑 → (1...𝑁) ∈ V) |
| 34 | | retop 24782 |
. . . . . . 7
⊢
(topGen‘ran (,)) ∈ Top |
| 35 | 34 | fconst6 6798 |
. . . . . 6
⊢
((1...𝑁) ×
{(topGen‘ran (,))}):(1...𝑁)⟶Top |
| 36 | 35 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((1...𝑁) × {(topGen‘ran
(,))}):(1...𝑁)⟶Top) |
| 37 | 18 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑅 ↾t 𝐼) ∈ (TopOn‘𝐼)) |
| 38 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 39 | 38 | cnfldtop 24804 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) ∈ Top |
| 40 | | cnrest2r 23295 |
. . . . . . . . . . 11
⊢
((TopOpen‘ℂfld) ∈ Top → ((𝑅 ↾t 𝐼) Cn
((TopOpen‘ℂfld) ↾t ℝ)) ⊆
((𝑅 ↾t
𝐼) Cn
(TopOpen‘ℂfld))) |
| 41 | 39, 40 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑅 ↾t 𝐼) Cn
((TopOpen‘ℂfld) ↾t ℝ)) ⊆
((𝑅 ↾t
𝐼) Cn
(TopOpen‘ℂfld)) |
| 42 | | resmpt 6055 |
. . . . . . . . . . . . 13
⊢ (𝐼 ⊆ (ℝ
↑m (1...𝑁))
→ ((𝑥 ∈ (ℝ
↑m (1...𝑁))
↦ (𝑥‘𝑛)) ↾ 𝐼) = (𝑥 ∈ 𝐼 ↦ (𝑥‘𝑛))) |
| 43 | 16, 42 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (ℝ
↑m (1...𝑁))
↦ (𝑥‘𝑛)) ↾ 𝐼) = (𝑥 ∈ 𝐼 ↦ (𝑥‘𝑛)) |
| 44 | 11 | toponunii 22922 |
. . . . . . . . . . . . . . 15
⊢ (ℝ
↑m (1...𝑁))
= ∪ 𝑅 |
| 45 | 44, 3 | ptpjcn 23619 |
. . . . . . . . . . . . . 14
⊢
(((1...𝑁) ∈ V
∧ ((1...𝑁) ×
{(topGen‘ran (,))}):(1...𝑁)⟶Top ∧ 𝑛 ∈ (1...𝑁)) → (𝑥 ∈ (ℝ ↑m
(1...𝑁)) ↦ (𝑥‘𝑛)) ∈ (𝑅 Cn (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛))) |
| 46 | 8, 35, 45 | mp3an12 1453 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (1...𝑁) → (𝑥 ∈ (ℝ ↑m
(1...𝑁)) ↦ (𝑥‘𝑛)) ∈ (𝑅 Cn (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛))) |
| 47 | 44 | cnrest 23293 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ (ℝ
↑m (1...𝑁))
↦ (𝑥‘𝑛)) ∈ (𝑅 Cn (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)) ∧
𝐼 ⊆ (ℝ
↑m (1...𝑁))) → ((𝑥 ∈ (ℝ ↑m
(1...𝑁)) ↦ (𝑥‘𝑛)) ↾ 𝐼) ∈ ((𝑅 ↾t 𝐼) Cn (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛))) |
| 48 | 46, 16, 47 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (1...𝑁) → ((𝑥 ∈ (ℝ ↑m
(1...𝑁)) ↦ (𝑥‘𝑛)) ↾ 𝐼) ∈ ((𝑅 ↾t 𝐼) Cn (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛))) |
| 49 | 43, 48 | eqeltrrid 2846 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (1...𝑁) → (𝑥 ∈ 𝐼 ↦ (𝑥‘𝑛)) ∈ ((𝑅 ↾t 𝐼) Cn (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛))) |
| 50 | | fvex 6919 |
. . . . . . . . . . . . . 14
⊢
(topGen‘ran (,)) ∈ V |
| 51 | 50 | fvconst2 7224 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛) =
(topGen‘ran (,))) |
| 52 | | tgioo4 24826 |
. . . . . . . . . . . . 13
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 53 | 51, 52 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛) =
((TopOpen‘ℂfld) ↾t
ℝ)) |
| 54 | 53 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (1...𝑁) → ((𝑅 ↾t 𝐼) Cn (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)) = ((𝑅 ↾t 𝐼) Cn
((TopOpen‘ℂfld) ↾t
ℝ))) |
| 55 | 49, 54 | eleqtrd 2843 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...𝑁) → (𝑥 ∈ 𝐼 ↦ (𝑥‘𝑛)) ∈ ((𝑅 ↾t 𝐼) Cn ((TopOpen‘ℂfld)
↾t ℝ))) |
| 56 | 41, 55 | sselid 3981 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1...𝑁) → (𝑥 ∈ 𝐼 ↦ (𝑥‘𝑛)) ∈ ((𝑅 ↾t 𝐼) Cn
(TopOpen‘ℂfld))) |
| 57 | 56 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑥 ∈ 𝐼 ↦ (𝑥‘𝑛)) ∈ ((𝑅 ↾t 𝐼) Cn
(TopOpen‘ℂfld))) |
| 58 | 21 | feqmptd 6977 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 59 | 58, 7 | eqeltrrd 2842 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥)) ∈ ((𝑅 ↾t 𝐼) Cn (𝑅 ↾t 𝐼))) |
| 60 | 59 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥)) ∈ ((𝑅 ↾t 𝐼) Cn (𝑅 ↾t 𝐼))) |
| 61 | | fveq1 6905 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑥‘𝑛) = (𝑧‘𝑛)) |
| 62 | 61 | cbvmptv 5255 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐼 ↦ (𝑥‘𝑛)) = (𝑧 ∈ 𝐼 ↦ (𝑧‘𝑛)) |
| 63 | 62, 57 | eqeltrrid 2846 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑧 ∈ 𝐼 ↦ (𝑧‘𝑛)) ∈ ((𝑅 ↾t 𝐼) Cn
(TopOpen‘ℂfld))) |
| 64 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑧 = (𝐹‘𝑥) → (𝑧‘𝑛) = ((𝐹‘𝑥)‘𝑛)) |
| 65 | 37, 60, 37, 63, 64 | cnmpt11 23671 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) ∈ ((𝑅 ↾t 𝐼) Cn
(TopOpen‘ℂfld))) |
| 66 | 38 | subcn 24888 |
. . . . . . . . 9
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 67 | 66 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → − ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
| 68 | 37, 57, 65, 67 | cnmpt12f 23674 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑥 ∈ 𝐼 ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))) ∈ ((𝑅 ↾t 𝐼) Cn
(TopOpen‘ℂfld))) |
| 69 | | elmapi 8889 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ((0[,]1)
↑m (1...𝑁))
→ 𝑥:(1...𝑁)⟶(0[,]1)) |
| 70 | 69, 2 | eleq2s 2859 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐼 → 𝑥:(1...𝑁)⟶(0[,]1)) |
| 71 | 70 | ffvelcdmda 7104 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐼 ∧ 𝑛 ∈ (1...𝑁)) → (𝑥‘𝑛) ∈ (0[,]1)) |
| 72 | 13, 71 | sselid 3981 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐼 ∧ 𝑛 ∈ (1...𝑁)) → (𝑥‘𝑛) ∈ ℝ) |
| 73 | 72 | adantll 714 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑥‘𝑛) ∈ ℝ) |
| 74 | | elmapi 8889 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑥) ∈ ((0[,]1) ↑m
(1...𝑁)) → (𝐹‘𝑥):(1...𝑁)⟶(0[,]1)) |
| 75 | 74, 2 | eleq2s 2859 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑥) ∈ 𝐼 → (𝐹‘𝑥):(1...𝑁)⟶(0[,]1)) |
| 76 | 22, 75 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥):(1...𝑁)⟶(0[,]1)) |
| 77 | 76 | ffvelcdmda 7104 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘𝑥)‘𝑛) ∈ (0[,]1)) |
| 78 | 13, 77 | sselid 3981 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘𝑥)‘𝑛) ∈ ℝ) |
| 79 | 73, 78 | resubcld 11691 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛)) ∈ ℝ) |
| 80 | 79 | an32s 652 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑥 ∈ 𝐼) → ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛)) ∈ ℝ) |
| 81 | 80 | fmpttd 7135 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑥 ∈ 𝐼 ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))):𝐼⟶ℝ) |
| 82 | | frn 6743 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐼 ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))):𝐼⟶ℝ → ran (𝑥 ∈ 𝐼 ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))) ⊆ ℝ) |
| 83 | 38 | cnfldtopon 24803 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 84 | | ax-resscn 11212 |
. . . . . . . . 9
⊢ ℝ
⊆ ℂ |
| 85 | | cnrest2 23294 |
. . . . . . . . 9
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ ran (𝑥 ∈ 𝐼 ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))) ⊆ ℝ ∧ ℝ ⊆
ℂ) → ((𝑥 ∈
𝐼 ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))) ∈ ((𝑅 ↾t 𝐼) Cn (TopOpen‘ℂfld))
↔ (𝑥 ∈ 𝐼 ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))) ∈ ((𝑅 ↾t 𝐼) Cn ((TopOpen‘ℂfld)
↾t ℝ)))) |
| 86 | 83, 84, 85 | mp3an13 1454 |
. . . . . . . 8
⊢ (ran
(𝑥 ∈ 𝐼 ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))) ⊆ ℝ → ((𝑥 ∈ 𝐼 ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))) ∈ ((𝑅 ↾t 𝐼) Cn (TopOpen‘ℂfld))
↔ (𝑥 ∈ 𝐼 ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))) ∈ ((𝑅 ↾t 𝐼) Cn ((TopOpen‘ℂfld)
↾t ℝ)))) |
| 87 | 81, 82, 86 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((𝑥 ∈ 𝐼 ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))) ∈ ((𝑅 ↾t 𝐼) Cn (TopOpen‘ℂfld))
↔ (𝑥 ∈ 𝐼 ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))) ∈ ((𝑅 ↾t 𝐼) Cn ((TopOpen‘ℂfld)
↾t ℝ)))) |
| 88 | 68, 87 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑥 ∈ 𝐼 ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))) ∈ ((𝑅 ↾t 𝐼) Cn ((TopOpen‘ℂfld)
↾t ℝ))) |
| 89 | 54 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((𝑅 ↾t 𝐼) Cn (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)) = ((𝑅 ↾t 𝐼) Cn
((TopOpen‘ℂfld) ↾t
ℝ))) |
| 90 | 88, 89 | eleqtrrd 2844 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑥 ∈ 𝐼 ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛))) ∈ ((𝑅 ↾t 𝐼) Cn (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛))) |
| 91 | 3, 32, 33, 36, 90 | ptcn 23635 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑥‘𝑛) − ((𝐹‘𝑥)‘𝑛)))) ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) |
| 92 | 31, 91 | eqeltrd 2841 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥))) ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) |
| 93 | | simpr2 1196 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → 𝑧 ∈ 𝐼) |
| 94 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
| 95 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 96 | 94, 95 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ∘f − (𝐹‘𝑥)) = (𝑧 ∘f − (𝐹‘𝑧))) |
| 97 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥))) |
| 98 | | ovex 7464 |
. . . . . . . 8
⊢ (𝑧 ∘f −
(𝐹‘𝑧)) ∈ V |
| 99 | 96, 97, 98 | fvmpt 7016 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥)))‘𝑧) = (𝑧 ∘f − (𝐹‘𝑧))) |
| 100 | 99 | fveq1d 6908 |
. . . . . 6
⊢ (𝑧 ∈ 𝐼 → (((𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥)))‘𝑧)‘𝑛) = ((𝑧 ∘f − (𝐹‘𝑧))‘𝑛)) |
| 101 | 93, 100 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → (((𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥)))‘𝑧)‘𝑛) = ((𝑧 ∘f − (𝐹‘𝑧))‘𝑛)) |
| 102 | | elmapfn 8905 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ((0[,]1)
↑m (1...𝑁))
→ 𝑧 Fn (1...𝑁)) |
| 103 | 102, 2 | eleq2s 2859 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐼 → 𝑧 Fn (1...𝑁)) |
| 104 | 103 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑧‘𝑛) = 0) ∧ 𝑧 ∈ 𝐼) → 𝑧 Fn (1...𝑁)) |
| 105 | 21 | ffvelcdmda 7104 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑧) ∈ 𝐼) |
| 106 | | elmapfn 8905 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑧) ∈ ((0[,]1) ↑m
(1...𝑁)) → (𝐹‘𝑧) Fn (1...𝑁)) |
| 107 | 106, 2 | eleq2s 2859 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑧) ∈ 𝐼 → (𝐹‘𝑧) Fn (1...𝑁)) |
| 108 | 105, 107 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑧) Fn (1...𝑁)) |
| 109 | 108 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑧‘𝑛) = 0) ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑧) Fn (1...𝑁)) |
| 110 | | ovexd 7466 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑧‘𝑛) = 0) ∧ 𝑧 ∈ 𝐼) → (1...𝑁) ∈ V) |
| 111 | | simpllr 776 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑧‘𝑛) = 0) ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑧‘𝑛) = 0) |
| 112 | | eqidd 2738 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑧‘𝑛) = 0) ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘𝑧)‘𝑛) = ((𝐹‘𝑧)‘𝑛)) |
| 113 | 104, 109,
110, 110, 27, 111, 112 | ofval 7708 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧‘𝑛) = 0) ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑧 ∘f − (𝐹‘𝑧))‘𝑛) = (0 − ((𝐹‘𝑧)‘𝑛))) |
| 114 | | df-neg 11495 |
. . . . . . . . 9
⊢ -((𝐹‘𝑧)‘𝑛) = (0 − ((𝐹‘𝑧)‘𝑛)) |
| 115 | 113, 114 | eqtr4di 2795 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑧‘𝑛) = 0) ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑧 ∘f − (𝐹‘𝑧))‘𝑛) = -((𝐹‘𝑧)‘𝑛)) |
| 116 | 115 | exp41 434 |
. . . . . . 7
⊢ (𝜑 → ((𝑧‘𝑛) = 0 → (𝑧 ∈ 𝐼 → (𝑛 ∈ (1...𝑁) → ((𝑧 ∘f − (𝐹‘𝑧))‘𝑛) = -((𝐹‘𝑧)‘𝑛))))) |
| 117 | 116 | com24 95 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) → (𝑧 ∈ 𝐼 → ((𝑧‘𝑛) = 0 → ((𝑧 ∘f − (𝐹‘𝑧))‘𝑛) = -((𝐹‘𝑧)‘𝑛))))) |
| 118 | 117 | 3imp2 1350 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → ((𝑧 ∘f − (𝐹‘𝑧))‘𝑛) = -((𝐹‘𝑧)‘𝑛)) |
| 119 | 101, 118 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → (((𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥)))‘𝑧)‘𝑛) = -((𝐹‘𝑧)‘𝑛)) |
| 120 | | elmapi 8889 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑧) ∈ ((0[,]1) ↑m
(1...𝑁)) → (𝐹‘𝑧):(1...𝑁)⟶(0[,]1)) |
| 121 | 120, 2 | eleq2s 2859 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑧) ∈ 𝐼 → (𝐹‘𝑧):(1...𝑁)⟶(0[,]1)) |
| 122 | 105, 121 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑧):(1...𝑁)⟶(0[,]1)) |
| 123 | 122 | ffvelcdmda 7104 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘𝑧)‘𝑛) ∈ (0[,]1)) |
| 124 | | 0xr 11308 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
| 125 | | 1xr 11320 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ* |
| 126 | | iccgelb 13443 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ* ∧ ((𝐹‘𝑧)‘𝑛) ∈ (0[,]1)) → 0 ≤ ((𝐹‘𝑧)‘𝑛)) |
| 127 | 124, 125,
126 | mp3an12 1453 |
. . . . . . . . 9
⊢ (((𝐹‘𝑧)‘𝑛) ∈ (0[,]1) → 0 ≤ ((𝐹‘𝑧)‘𝑛)) |
| 128 | 123, 127 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → 0 ≤ ((𝐹‘𝑧)‘𝑛)) |
| 129 | 13, 123 | sselid 3981 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘𝑧)‘𝑛) ∈ ℝ) |
| 130 | 129 | le0neg2d 11835 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (0 ≤ ((𝐹‘𝑧)‘𝑛) ↔ -((𝐹‘𝑧)‘𝑛) ≤ 0)) |
| 131 | 128, 130 | mpbid 232 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → -((𝐹‘𝑧)‘𝑛) ≤ 0) |
| 132 | 131 | an32s 652 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑧 ∈ 𝐼) → -((𝐹‘𝑧)‘𝑛) ≤ 0) |
| 133 | 132 | anasss 466 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼)) → -((𝐹‘𝑧)‘𝑛) ≤ 0) |
| 134 | 133 | 3adantr3 1172 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → -((𝐹‘𝑧)‘𝑛) ≤ 0) |
| 135 | 119, 134 | eqbrtrd 5165 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → (((𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥)))‘𝑧)‘𝑛) ≤ 0) |
| 136 | | iccleub 13442 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ* ∧ ((𝐹‘𝑧)‘𝑛) ∈ (0[,]1)) → ((𝐹‘𝑧)‘𝑛) ≤ 1) |
| 137 | 124, 125,
136 | mp3an12 1453 |
. . . . . . . . 9
⊢ (((𝐹‘𝑧)‘𝑛) ∈ (0[,]1) → ((𝐹‘𝑧)‘𝑛) ≤ 1) |
| 138 | 123, 137 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘𝑧)‘𝑛) ≤ 1) |
| 139 | | 1red 11262 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → 1 ∈ ℝ) |
| 140 | 139, 129 | subge0d 11853 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (0 ≤ (1 − ((𝐹‘𝑧)‘𝑛)) ↔ ((𝐹‘𝑧)‘𝑛) ≤ 1)) |
| 141 | 138, 140 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → 0 ≤ (1 − ((𝐹‘𝑧)‘𝑛))) |
| 142 | 141 | an32s 652 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑧 ∈ 𝐼) → 0 ≤ (1 − ((𝐹‘𝑧)‘𝑛))) |
| 143 | 142 | anasss 466 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼)) → 0 ≤ (1 − ((𝐹‘𝑧)‘𝑛))) |
| 144 | 143 | 3adantr3 1172 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → 0 ≤ (1 − ((𝐹‘𝑧)‘𝑛))) |
| 145 | | simpr2 1196 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → 𝑧 ∈ 𝐼) |
| 146 | 145, 100 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → (((𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥)))‘𝑧)‘𝑛) = ((𝑧 ∘f − (𝐹‘𝑧))‘𝑛)) |
| 147 | 103 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧‘𝑛) = 1) ∧ 𝑧 ∈ 𝐼) → 𝑧 Fn (1...𝑁)) |
| 148 | 108 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧‘𝑛) = 1) ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑧) Fn (1...𝑁)) |
| 149 | | ovexd 7466 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧‘𝑛) = 1) ∧ 𝑧 ∈ 𝐼) → (1...𝑁) ∈ V) |
| 150 | | simpllr 776 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧‘𝑛) = 1) ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑧‘𝑛) = 1) |
| 151 | | eqidd 2738 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧‘𝑛) = 1) ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘𝑧)‘𝑛) = ((𝐹‘𝑧)‘𝑛)) |
| 152 | 147, 148,
149, 149, 27, 150, 151 | ofval 7708 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑧‘𝑛) = 1) ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑧 ∘f − (𝐹‘𝑧))‘𝑛) = (1 − ((𝐹‘𝑧)‘𝑛))) |
| 153 | 152 | exp41 434 |
. . . . . . 7
⊢ (𝜑 → ((𝑧‘𝑛) = 1 → (𝑧 ∈ 𝐼 → (𝑛 ∈ (1...𝑁) → ((𝑧 ∘f − (𝐹‘𝑧))‘𝑛) = (1 − ((𝐹‘𝑧)‘𝑛)))))) |
| 154 | 153 | com24 95 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) → (𝑧 ∈ 𝐼 → ((𝑧‘𝑛) = 1 → ((𝑧 ∘f − (𝐹‘𝑧))‘𝑛) = (1 − ((𝐹‘𝑧)‘𝑛)))))) |
| 155 | 154 | 3imp2 1350 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → ((𝑧 ∘f − (𝐹‘𝑧))‘𝑛) = (1 − ((𝐹‘𝑧)‘𝑛))) |
| 156 | 146, 155 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → (((𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥)))‘𝑧)‘𝑛) = (1 − ((𝐹‘𝑧)‘𝑛))) |
| 157 | 144, 156 | breqtrrd 5171 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → 0 ≤ (((𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥)))‘𝑧)‘𝑛)) |
| 158 | 1, 2, 3, 92, 135, 157 | poimir 37660 |
. 2
⊢ (𝜑 → ∃𝑐 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥)))‘𝑐) = ((1...𝑁) × {0})) |
| 159 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = 𝑐 → 𝑥 = 𝑐) |
| 160 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑥 = 𝑐 → (𝐹‘𝑥) = (𝐹‘𝑐)) |
| 161 | 159, 160 | oveq12d 7449 |
. . . . . . 7
⊢ (𝑥 = 𝑐 → (𝑥 ∘f − (𝐹‘𝑥)) = (𝑐 ∘f − (𝐹‘𝑐))) |
| 162 | | ovex 7464 |
. . . . . . 7
⊢ (𝑐 ∘f −
(𝐹‘𝑐)) ∈ V |
| 163 | 161, 97, 162 | fvmpt 7016 |
. . . . . 6
⊢ (𝑐 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥)))‘𝑐) = (𝑐 ∘f − (𝐹‘𝑐))) |
| 164 | 163 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → ((𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥)))‘𝑐) = (𝑐 ∘f − (𝐹‘𝑐))) |
| 165 | 164 | eqeq1d 2739 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (((𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥)))‘𝑐) = ((1...𝑁) × {0}) ↔ (𝑐 ∘f − (𝐹‘𝑐)) = ((1...𝑁) × {0}))) |
| 166 | | elmapfn 8905 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ ((0[,]1)
↑m (1...𝑁))
→ 𝑐 Fn (1...𝑁)) |
| 167 | 166, 2 | eleq2s 2859 |
. . . . . . . . . 10
⊢ (𝑐 ∈ 𝐼 → 𝑐 Fn (1...𝑁)) |
| 168 | 167 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → 𝑐 Fn (1...𝑁)) |
| 169 | 21 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝐹‘𝑐) ∈ 𝐼) |
| 170 | | elmapfn 8905 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑐) ∈ ((0[,]1) ↑m
(1...𝑁)) → (𝐹‘𝑐) Fn (1...𝑁)) |
| 171 | 170, 2 | eleq2s 2859 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑐) ∈ 𝐼 → (𝐹‘𝑐) Fn (1...𝑁)) |
| 172 | 169, 171 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝐹‘𝑐) Fn (1...𝑁)) |
| 173 | | ovexd 7466 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (1...𝑁) ∈ V) |
| 174 | | eqidd 2738 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑐‘𝑛) = (𝑐‘𝑛)) |
| 175 | | eqidd 2738 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘𝑐)‘𝑛) = ((𝐹‘𝑐)‘𝑛)) |
| 176 | 168, 172,
173, 173, 27, 174, 175 | ofval 7708 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑐 ∘f − (𝐹‘𝑐))‘𝑛) = ((𝑐‘𝑛) − ((𝐹‘𝑐)‘𝑛))) |
| 177 | | c0ex 11255 |
. . . . . . . . . 10
⊢ 0 ∈
V |
| 178 | 177 | fvconst2 7224 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {0})‘𝑛) = 0) |
| 179 | 178 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {0})‘𝑛) = 0) |
| 180 | 176, 179 | eqeq12d 2753 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑐 ∘f − (𝐹‘𝑐))‘𝑛) = (((1...𝑁) × {0})‘𝑛) ↔ ((𝑐‘𝑛) − ((𝐹‘𝑐)‘𝑛)) = 0)) |
| 181 | 13, 84 | sstri 3993 |
. . . . . . . . . 10
⊢ (0[,]1)
⊆ ℂ |
| 182 | | elmapi 8889 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ ((0[,]1)
↑m (1...𝑁))
→ 𝑐:(1...𝑁)⟶(0[,]1)) |
| 183 | 182, 2 | eleq2s 2859 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝐼 → 𝑐:(1...𝑁)⟶(0[,]1)) |
| 184 | 183 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑛 ∈ (1...𝑁)) → (𝑐‘𝑛) ∈ (0[,]1)) |
| 185 | 181, 184 | sselid 3981 |
. . . . . . . . 9
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑛 ∈ (1...𝑁)) → (𝑐‘𝑛) ∈ ℂ) |
| 186 | 185 | adantll 714 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑐‘𝑛) ∈ ℂ) |
| 187 | | elmapi 8889 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑐) ∈ ((0[,]1) ↑m
(1...𝑁)) → (𝐹‘𝑐):(1...𝑁)⟶(0[,]1)) |
| 188 | 187, 2 | eleq2s 2859 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑐) ∈ 𝐼 → (𝐹‘𝑐):(1...𝑁)⟶(0[,]1)) |
| 189 | 169, 188 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝐹‘𝑐):(1...𝑁)⟶(0[,]1)) |
| 190 | 189 | ffvelcdmda 7104 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘𝑐)‘𝑛) ∈ (0[,]1)) |
| 191 | 181, 190 | sselid 3981 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘𝑐)‘𝑛) ∈ ℂ) |
| 192 | 186, 191 | subeq0ad 11630 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑐‘𝑛) − ((𝐹‘𝑐)‘𝑛)) = 0 ↔ (𝑐‘𝑛) = ((𝐹‘𝑐)‘𝑛))) |
| 193 | 180, 192 | bitrd 279 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑐 ∘f − (𝐹‘𝑐))‘𝑛) = (((1...𝑁) × {0})‘𝑛) ↔ (𝑐‘𝑛) = ((𝐹‘𝑐)‘𝑛))) |
| 194 | 193 | ralbidva 3176 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (∀𝑛 ∈ (1...𝑁)((𝑐 ∘f − (𝐹‘𝑐))‘𝑛) = (((1...𝑁) × {0})‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁)(𝑐‘𝑛) = ((𝐹‘𝑐)‘𝑛))) |
| 195 | 168, 172,
173, 173, 27 | offn 7710 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑐 ∘f − (𝐹‘𝑐)) Fn (1...𝑁)) |
| 196 | | fnconstg 6796 |
. . . . . . 7
⊢ (0 ∈
V → ((1...𝑁) ×
{0}) Fn (1...𝑁)) |
| 197 | 177, 196 | ax-mp 5 |
. . . . . 6
⊢
((1...𝑁) ×
{0}) Fn (1...𝑁) |
| 198 | | eqfnfv 7051 |
. . . . . 6
⊢ (((𝑐 ∘f −
(𝐹‘𝑐)) Fn (1...𝑁) ∧ ((1...𝑁) × {0}) Fn (1...𝑁)) → ((𝑐 ∘f − (𝐹‘𝑐)) = ((1...𝑁) × {0}) ↔ ∀𝑛 ∈ (1...𝑁)((𝑐 ∘f − (𝐹‘𝑐))‘𝑛) = (((1...𝑁) × {0})‘𝑛))) |
| 199 | 195, 197,
198 | sylancl 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → ((𝑐 ∘f − (𝐹‘𝑐)) = ((1...𝑁) × {0}) ↔ ∀𝑛 ∈ (1...𝑁)((𝑐 ∘f − (𝐹‘𝑐))‘𝑛) = (((1...𝑁) × {0})‘𝑛))) |
| 200 | | eqfnfv 7051 |
. . . . . 6
⊢ ((𝑐 Fn (1...𝑁) ∧ (𝐹‘𝑐) Fn (1...𝑁)) → (𝑐 = (𝐹‘𝑐) ↔ ∀𝑛 ∈ (1...𝑁)(𝑐‘𝑛) = ((𝐹‘𝑐)‘𝑛))) |
| 201 | 168, 172,
200 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑐 = (𝐹‘𝑐) ↔ ∀𝑛 ∈ (1...𝑁)(𝑐‘𝑛) = ((𝐹‘𝑐)‘𝑛))) |
| 202 | 194, 199,
201 | 3bitr4d 311 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → ((𝑐 ∘f − (𝐹‘𝑐)) = ((1...𝑁) × {0}) ↔ 𝑐 = (𝐹‘𝑐))) |
| 203 | 165, 202 | bitrd 279 |
. . 3
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (((𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥)))‘𝑐) = ((1...𝑁) × {0}) ↔ 𝑐 = (𝐹‘𝑐))) |
| 204 | 203 | rexbidva 3177 |
. 2
⊢ (𝜑 → (∃𝑐 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ (𝑥 ∘f − (𝐹‘𝑥)))‘𝑐) = ((1...𝑁) × {0}) ↔ ∃𝑐 ∈ 𝐼 𝑐 = (𝐹‘𝑐))) |
| 205 | 158, 204 | mpbid 232 |
1
⊢ (𝜑 → ∃𝑐 ∈ 𝐼 𝑐 = (𝐹‘𝑐)) |