Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broucube Structured version   Visualization version   GIF version

Theorem broucube 35811
Description: Brouwer - or as Kulpa calls it, "Bohl-Brouwer" - fixed point theorem for the unit cube. Theorem on [Kulpa] p. 548. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimir.i 𝐼 = ((0[,]1) ↑m (1...𝑁))
poimir.r 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
broucube.1 (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn (𝑅t 𝐼)))
Assertion
Ref Expression
broucube (𝜑 → ∃𝑐𝐼 𝑐 = (𝐹𝑐))
Distinct variable groups:   𝜑,𝑐   𝐹,𝑐   𝐼,𝑐   𝑁,𝑐   𝑅,𝑐

Proof of Theorem broucube
Dummy variables 𝑛 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . 3 (𝜑𝑁 ∈ ℕ)
2 poimir.i . . 3 𝐼 = ((0[,]1) ↑m (1...𝑁))
3 poimir.r . . 3 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
4 elmapfn 8653 . . . . . . . 8 (𝑥 ∈ ((0[,]1) ↑m (1...𝑁)) → 𝑥 Fn (1...𝑁))
54, 2eleq2s 2857 . . . . . . 7 (𝑥𝐼𝑥 Fn (1...𝑁))
65adantl 482 . . . . . 6 ((𝜑𝑥𝐼) → 𝑥 Fn (1...𝑁))
7 broucube.1 . . . . . . . . 9 (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn (𝑅t 𝐼)))
8 ovex 7308 . . . . . . . . . . . . 13 (1...𝑁) ∈ V
9 retopon 23927 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
103pttoponconst 22748 . . . . . . . . . . . . 13 (((1...𝑁) ∈ V ∧ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) → 𝑅 ∈ (TopOn‘(ℝ ↑m (1...𝑁))))
118, 9, 10mp2an 689 . . . . . . . . . . . 12 𝑅 ∈ (TopOn‘(ℝ ↑m (1...𝑁)))
12 reex 10962 . . . . . . . . . . . . . 14 ℝ ∈ V
13 unitssre 13231 . . . . . . . . . . . . . 14 (0[,]1) ⊆ ℝ
14 mapss 8677 . . . . . . . . . . . . . 14 ((ℝ ∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑m (1...𝑁)) ⊆ (ℝ ↑m (1...𝑁)))
1512, 13, 14mp2an 689 . . . . . . . . . . . . 13 ((0[,]1) ↑m (1...𝑁)) ⊆ (ℝ ↑m (1...𝑁))
162, 15eqsstri 3955 . . . . . . . . . . . 12 𝐼 ⊆ (ℝ ↑m (1...𝑁))
17 resttopon 22312 . . . . . . . . . . . 12 ((𝑅 ∈ (TopOn‘(ℝ ↑m (1...𝑁))) ∧ 𝐼 ⊆ (ℝ ↑m (1...𝑁))) → (𝑅t 𝐼) ∈ (TopOn‘𝐼))
1811, 16, 17mp2an 689 . . . . . . . . . . 11 (𝑅t 𝐼) ∈ (TopOn‘𝐼)
1918toponunii 22065 . . . . . . . . . 10 𝐼 = (𝑅t 𝐼)
2019, 19cnf 22397 . . . . . . . . 9 (𝐹 ∈ ((𝑅t 𝐼) Cn (𝑅t 𝐼)) → 𝐹:𝐼𝐼)
217, 20syl 17 . . . . . . . 8 (𝜑𝐹:𝐼𝐼)
2221ffvelrnda 6961 . . . . . . 7 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ 𝐼)
23 elmapfn 8653 . . . . . . . 8 ((𝐹𝑥) ∈ ((0[,]1) ↑m (1...𝑁)) → (𝐹𝑥) Fn (1...𝑁))
2423, 2eleq2s 2857 . . . . . . 7 ((𝐹𝑥) ∈ 𝐼 → (𝐹𝑥) Fn (1...𝑁))
2522, 24syl 17 . . . . . 6 ((𝜑𝑥𝐼) → (𝐹𝑥) Fn (1...𝑁))
26 ovexd 7310 . . . . . 6 ((𝜑𝑥𝐼) → (1...𝑁) ∈ V)
27 inidm 4152 . . . . . 6 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
28 eqidd 2739 . . . . . 6 (((𝜑𝑥𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑥𝑛) = (𝑥𝑛))
29 eqidd 2739 . . . . . 6 (((𝜑𝑥𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑥)‘𝑛) = ((𝐹𝑥)‘𝑛))
306, 25, 26, 26, 27, 28, 29offval 7542 . . . . 5 ((𝜑𝑥𝐼) → (𝑥f − (𝐹𝑥)) = (𝑛 ∈ (1...𝑁) ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))))
3130mpteq2dva 5174 . . . 4 (𝜑 → (𝑥𝐼 ↦ (𝑥f − (𝐹𝑥))) = (𝑥𝐼 ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛)))))
3218a1i 11 . . . . 5 (𝜑 → (𝑅t 𝐼) ∈ (TopOn‘𝐼))
33 ovexd 7310 . . . . 5 (𝜑 → (1...𝑁) ∈ V)
34 retop 23925 . . . . . . 7 (topGen‘ran (,)) ∈ Top
3534fconst6 6664 . . . . . 6 ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Top
3635a1i 11 . . . . 5 (𝜑 → ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Top)
3718a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑅t 𝐼) ∈ (TopOn‘𝐼))
38 eqid 2738 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3938cnfldtop 23947 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
40 cnrest2r 22438 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ∈ Top → ((𝑅t 𝐼) Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ ((𝑅t 𝐼) Cn (TopOpen‘ℂfld)))
4139, 40ax-mp 5 . . . . . . . . . 10 ((𝑅t 𝐼) Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ ((𝑅t 𝐼) Cn (TopOpen‘ℂfld))
42 resmpt 5945 . . . . . . . . . . . . 13 (𝐼 ⊆ (ℝ ↑m (1...𝑁)) → ((𝑥 ∈ (ℝ ↑m (1...𝑁)) ↦ (𝑥𝑛)) ↾ 𝐼) = (𝑥𝐼 ↦ (𝑥𝑛)))
4316, 42ax-mp 5 . . . . . . . . . . . 12 ((𝑥 ∈ (ℝ ↑m (1...𝑁)) ↦ (𝑥𝑛)) ↾ 𝐼) = (𝑥𝐼 ↦ (𝑥𝑛))
4411toponunii 22065 . . . . . . . . . . . . . . 15 (ℝ ↑m (1...𝑁)) = 𝑅
4544, 3ptpjcn 22762 . . . . . . . . . . . . . 14 (((1...𝑁) ∈ V ∧ ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Top ∧ 𝑛 ∈ (1...𝑁)) → (𝑥 ∈ (ℝ ↑m (1...𝑁)) ↦ (𝑥𝑛)) ∈ (𝑅 Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)))
468, 35, 45mp3an12 1450 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) → (𝑥 ∈ (ℝ ↑m (1...𝑁)) ↦ (𝑥𝑛)) ∈ (𝑅 Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)))
4744cnrest 22436 . . . . . . . . . . . . 13 (((𝑥 ∈ (ℝ ↑m (1...𝑁)) ↦ (𝑥𝑛)) ∈ (𝑅 Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝐼 ⊆ (ℝ ↑m (1...𝑁))) → ((𝑥 ∈ (ℝ ↑m (1...𝑁)) ↦ (𝑥𝑛)) ↾ 𝐼) ∈ ((𝑅t 𝐼) Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)))
4846, 16, 47sylancl 586 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑁) → ((𝑥 ∈ (ℝ ↑m (1...𝑁)) ↦ (𝑥𝑛)) ↾ 𝐼) ∈ ((𝑅t 𝐼) Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)))
4943, 48eqeltrrid 2844 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑁) → (𝑥𝐼 ↦ (𝑥𝑛)) ∈ ((𝑅t 𝐼) Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)))
50 fvex 6787 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ V
5150fvconst2 7079 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) = (topGen‘ran (,)))
5238tgioo2 23966 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
5351, 52eqtrdi 2794 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) = ((TopOpen‘ℂfld) ↾t ℝ))
5453oveq2d 7291 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑁) → ((𝑅t 𝐼) Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) = ((𝑅t 𝐼) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
5549, 54eleqtrd 2841 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) → (𝑥𝐼 ↦ (𝑥𝑛)) ∈ ((𝑅t 𝐼) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
5641, 55sselid 3919 . . . . . . . . 9 (𝑛 ∈ (1...𝑁) → (𝑥𝐼 ↦ (𝑥𝑛)) ∈ ((𝑅t 𝐼) Cn (TopOpen‘ℂfld)))
5756adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ (𝑥𝑛)) ∈ ((𝑅t 𝐼) Cn (TopOpen‘ℂfld)))
5821feqmptd 6837 . . . . . . . . . . 11 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
5958, 7eqeltrrd 2840 . . . . . . . . . 10 (𝜑 → (𝑥𝐼 ↦ (𝐹𝑥)) ∈ ((𝑅t 𝐼) Cn (𝑅t 𝐼)))
6059adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ (𝐹𝑥)) ∈ ((𝑅t 𝐼) Cn (𝑅t 𝐼)))
61 fveq1 6773 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥𝑛) = (𝑧𝑛))
6261cbvmptv 5187 . . . . . . . . . 10 (𝑥𝐼 ↦ (𝑥𝑛)) = (𝑧𝐼 ↦ (𝑧𝑛))
6362, 57eqeltrrid 2844 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑧𝐼 ↦ (𝑧𝑛)) ∈ ((𝑅t 𝐼) Cn (TopOpen‘ℂfld)))
64 fveq1 6773 . . . . . . . . 9 (𝑧 = (𝐹𝑥) → (𝑧𝑛) = ((𝐹𝑥)‘𝑛))
6537, 60, 37, 63, 64cnmpt11 22814 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ ((𝑅t 𝐼) Cn (TopOpen‘ℂfld)))
6638subcn 24029 . . . . . . . . 9 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6766a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
6837, 57, 65, 67cnmpt12f 22817 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))) ∈ ((𝑅t 𝐼) Cn (TopOpen‘ℂfld)))
69 elmapi 8637 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((0[,]1) ↑m (1...𝑁)) → 𝑥:(1...𝑁)⟶(0[,]1))
7069, 2eleq2s 2857 . . . . . . . . . . . . . 14 (𝑥𝐼𝑥:(1...𝑁)⟶(0[,]1))
7170ffvelrnda 6961 . . . . . . . . . . . . 13 ((𝑥𝐼𝑛 ∈ (1...𝑁)) → (𝑥𝑛) ∈ (0[,]1))
7213, 71sselid 3919 . . . . . . . . . . . 12 ((𝑥𝐼𝑛 ∈ (1...𝑁)) → (𝑥𝑛) ∈ ℝ)
7372adantll 711 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑥𝑛) ∈ ℝ)
74 elmapi 8637 . . . . . . . . . . . . . . 15 ((𝐹𝑥) ∈ ((0[,]1) ↑m (1...𝑁)) → (𝐹𝑥):(1...𝑁)⟶(0[,]1))
7574, 2eleq2s 2857 . . . . . . . . . . . . . 14 ((𝐹𝑥) ∈ 𝐼 → (𝐹𝑥):(1...𝑁)⟶(0[,]1))
7622, 75syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (𝐹𝑥):(1...𝑁)⟶(0[,]1))
7776ffvelrnda 6961 . . . . . . . . . . . 12 (((𝜑𝑥𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑥)‘𝑛) ∈ (0[,]1))
7813, 77sselid 3919 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑥)‘𝑛) ∈ ℝ)
7973, 78resubcld 11403 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑥𝑛) − ((𝐹𝑥)‘𝑛)) ∈ ℝ)
8079an32s 649 . . . . . . . . 9 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑥𝐼) → ((𝑥𝑛) − ((𝐹𝑥)‘𝑛)) ∈ ℝ)
8180fmpttd 6989 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))):𝐼⟶ℝ)
82 frn 6607 . . . . . . . 8 ((𝑥𝐼 ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))):𝐼⟶ℝ → ran (𝑥𝐼 ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))) ⊆ ℝ)
8338cnfldtopon 23946 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
84 ax-resscn 10928 . . . . . . . . 9 ℝ ⊆ ℂ
85 cnrest2 22437 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝐼 ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑥𝐼 ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))) ∈ ((𝑅t 𝐼) Cn (TopOpen‘ℂfld)) ↔ (𝑥𝐼 ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))) ∈ ((𝑅t 𝐼) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
8683, 84, 85mp3an13 1451 . . . . . . . 8 (ran (𝑥𝐼 ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))) ⊆ ℝ → ((𝑥𝐼 ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))) ∈ ((𝑅t 𝐼) Cn (TopOpen‘ℂfld)) ↔ (𝑥𝐼 ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))) ∈ ((𝑅t 𝐼) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
8781, 82, 863syl 18 . . . . . . 7 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑥𝐼 ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))) ∈ ((𝑅t 𝐼) Cn (TopOpen‘ℂfld)) ↔ (𝑥𝐼 ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))) ∈ ((𝑅t 𝐼) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
8868, 87mpbid 231 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))) ∈ ((𝑅t 𝐼) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
8954adantl 482 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝑅t 𝐼) Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) = ((𝑅t 𝐼) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
9088, 89eleqtrrd 2842 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛))) ∈ ((𝑅t 𝐼) Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)))
913, 32, 33, 36, 90ptcn 22778 . . . 4 (𝜑 → (𝑥𝐼 ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑥𝑛) − ((𝐹𝑥)‘𝑛)))) ∈ ((𝑅t 𝐼) Cn 𝑅))
9231, 91eqeltrd 2839 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑥f − (𝐹𝑥))) ∈ ((𝑅t 𝐼) Cn 𝑅))
93 simpr2 1194 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → 𝑧𝐼)
94 id 22 . . . . . . . . 9 (𝑥 = 𝑧𝑥 = 𝑧)
95 fveq2 6774 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
9694, 95oveq12d 7293 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥f − (𝐹𝑥)) = (𝑧f − (𝐹𝑧)))
97 eqid 2738 . . . . . . . 8 (𝑥𝐼 ↦ (𝑥f − (𝐹𝑥))) = (𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))
98 ovex 7308 . . . . . . . 8 (𝑧f − (𝐹𝑧)) ∈ V
9996, 97, 98fvmpt 6875 . . . . . . 7 (𝑧𝐼 → ((𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))‘𝑧) = (𝑧f − (𝐹𝑧)))
10099fveq1d 6776 . . . . . 6 (𝑧𝐼 → (((𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))‘𝑧)‘𝑛) = ((𝑧f − (𝐹𝑧))‘𝑛))
10193, 100syl 17 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → (((𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))‘𝑧)‘𝑛) = ((𝑧f − (𝐹𝑧))‘𝑛))
102 elmapfn 8653 . . . . . . . . . . . 12 (𝑧 ∈ ((0[,]1) ↑m (1...𝑁)) → 𝑧 Fn (1...𝑁))
103102, 2eleq2s 2857 . . . . . . . . . . 11 (𝑧𝐼𝑧 Fn (1...𝑁))
104103adantl 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑛) = 0) ∧ 𝑧𝐼) → 𝑧 Fn (1...𝑁))
10521ffvelrnda 6961 . . . . . . . . . . . 12 ((𝜑𝑧𝐼) → (𝐹𝑧) ∈ 𝐼)
106 elmapfn 8653 . . . . . . . . . . . . 13 ((𝐹𝑧) ∈ ((0[,]1) ↑m (1...𝑁)) → (𝐹𝑧) Fn (1...𝑁))
107106, 2eleq2s 2857 . . . . . . . . . . . 12 ((𝐹𝑧) ∈ 𝐼 → (𝐹𝑧) Fn (1...𝑁))
108105, 107syl 17 . . . . . . . . . . 11 ((𝜑𝑧𝐼) → (𝐹𝑧) Fn (1...𝑁))
109108adantlr 712 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑛) = 0) ∧ 𝑧𝐼) → (𝐹𝑧) Fn (1...𝑁))
110 ovexd 7310 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑛) = 0) ∧ 𝑧𝐼) → (1...𝑁) ∈ V)
111 simpllr 773 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝑛) = 0) ∧ 𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑧𝑛) = 0)
112 eqidd 2739 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧𝑛) = 0) ∧ 𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑧)‘𝑛) = ((𝐹𝑧)‘𝑛))
113104, 109, 110, 110, 27, 111, 112ofval 7544 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝑛) = 0) ∧ 𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑧f − (𝐹𝑧))‘𝑛) = (0 − ((𝐹𝑧)‘𝑛)))
114 df-neg 11208 . . . . . . . . 9 -((𝐹𝑧)‘𝑛) = (0 − ((𝐹𝑧)‘𝑛))
115113, 114eqtr4di 2796 . . . . . . . 8 ((((𝜑 ∧ (𝑧𝑛) = 0) ∧ 𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑧f − (𝐹𝑧))‘𝑛) = -((𝐹𝑧)‘𝑛))
116115exp41 435 . . . . . . 7 (𝜑 → ((𝑧𝑛) = 0 → (𝑧𝐼 → (𝑛 ∈ (1...𝑁) → ((𝑧f − (𝐹𝑧))‘𝑛) = -((𝐹𝑧)‘𝑛)))))
117116com24 95 . . . . . 6 (𝜑 → (𝑛 ∈ (1...𝑁) → (𝑧𝐼 → ((𝑧𝑛) = 0 → ((𝑧f − (𝐹𝑧))‘𝑛) = -((𝐹𝑧)‘𝑛)))))
1181173imp2 1348 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝑧f − (𝐹𝑧))‘𝑛) = -((𝐹𝑧)‘𝑛))
119101, 118eqtrd 2778 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → (((𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))‘𝑧)‘𝑛) = -((𝐹𝑧)‘𝑛))
120 elmapi 8637 . . . . . . . . . . . 12 ((𝐹𝑧) ∈ ((0[,]1) ↑m (1...𝑁)) → (𝐹𝑧):(1...𝑁)⟶(0[,]1))
121120, 2eleq2s 2857 . . . . . . . . . . 11 ((𝐹𝑧) ∈ 𝐼 → (𝐹𝑧):(1...𝑁)⟶(0[,]1))
122105, 121syl 17 . . . . . . . . . 10 ((𝜑𝑧𝐼) → (𝐹𝑧):(1...𝑁)⟶(0[,]1))
123122ffvelrnda 6961 . . . . . . . . 9 (((𝜑𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑧)‘𝑛) ∈ (0[,]1))
124 0xr 11022 . . . . . . . . . 10 0 ∈ ℝ*
125 1xr 11034 . . . . . . . . . 10 1 ∈ ℝ*
126 iccgelb 13135 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ((𝐹𝑧)‘𝑛) ∈ (0[,]1)) → 0 ≤ ((𝐹𝑧)‘𝑛))
127124, 125, 126mp3an12 1450 . . . . . . . . 9 (((𝐹𝑧)‘𝑛) ∈ (0[,]1) → 0 ≤ ((𝐹𝑧)‘𝑛))
128123, 127syl 17 . . . . . . . 8 (((𝜑𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → 0 ≤ ((𝐹𝑧)‘𝑛))
12913, 123sselid 3919 . . . . . . . . 9 (((𝜑𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑧)‘𝑛) ∈ ℝ)
130129le0neg2d 11547 . . . . . . . 8 (((𝜑𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (0 ≤ ((𝐹𝑧)‘𝑛) ↔ -((𝐹𝑧)‘𝑛) ≤ 0))
131128, 130mpbid 231 . . . . . . 7 (((𝜑𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → -((𝐹𝑧)‘𝑛) ≤ 0)
132131an32s 649 . . . . . 6 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → -((𝐹𝑧)‘𝑛) ≤ 0)
133132anasss 467 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼)) → -((𝐹𝑧)‘𝑛) ≤ 0)
1341333adantr3 1170 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → -((𝐹𝑧)‘𝑛) ≤ 0)
135119, 134eqbrtrd 5096 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → (((𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))‘𝑧)‘𝑛) ≤ 0)
136 iccleub 13134 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ ((𝐹𝑧)‘𝑛) ∈ (0[,]1)) → ((𝐹𝑧)‘𝑛) ≤ 1)
137124, 125, 136mp3an12 1450 . . . . . . . . 9 (((𝐹𝑧)‘𝑛) ∈ (0[,]1) → ((𝐹𝑧)‘𝑛) ≤ 1)
138123, 137syl 17 . . . . . . . 8 (((𝜑𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑧)‘𝑛) ≤ 1)
139 1red 10976 . . . . . . . . 9 (((𝜑𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → 1 ∈ ℝ)
140139, 129subge0d 11565 . . . . . . . 8 (((𝜑𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (0 ≤ (1 − ((𝐹𝑧)‘𝑛)) ↔ ((𝐹𝑧)‘𝑛) ≤ 1))
141138, 140mpbird 256 . . . . . . 7 (((𝜑𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → 0 ≤ (1 − ((𝐹𝑧)‘𝑛)))
142141an32s 649 . . . . . 6 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → 0 ≤ (1 − ((𝐹𝑧)‘𝑛)))
143142anasss 467 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼)) → 0 ≤ (1 − ((𝐹𝑧)‘𝑛)))
1441433adantr3 1170 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → 0 ≤ (1 − ((𝐹𝑧)‘𝑛)))
145 simpr2 1194 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → 𝑧𝐼)
146145, 100syl 17 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → (((𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))‘𝑧)‘𝑛) = ((𝑧f − (𝐹𝑧))‘𝑛))
147103adantl 482 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑛) = 1) ∧ 𝑧𝐼) → 𝑧 Fn (1...𝑁))
148108adantlr 712 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑛) = 1) ∧ 𝑧𝐼) → (𝐹𝑧) Fn (1...𝑁))
149 ovexd 7310 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑛) = 1) ∧ 𝑧𝐼) → (1...𝑁) ∈ V)
150 simpllr 773 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝑛) = 1) ∧ 𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑧𝑛) = 1)
151 eqidd 2739 . . . . . . . . 9 ((((𝜑 ∧ (𝑧𝑛) = 1) ∧ 𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑧)‘𝑛) = ((𝐹𝑧)‘𝑛))
152147, 148, 149, 149, 27, 150, 151ofval 7544 . . . . . . . 8 ((((𝜑 ∧ (𝑧𝑛) = 1) ∧ 𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑧f − (𝐹𝑧))‘𝑛) = (1 − ((𝐹𝑧)‘𝑛)))
153152exp41 435 . . . . . . 7 (𝜑 → ((𝑧𝑛) = 1 → (𝑧𝐼 → (𝑛 ∈ (1...𝑁) → ((𝑧f − (𝐹𝑧))‘𝑛) = (1 − ((𝐹𝑧)‘𝑛))))))
154153com24 95 . . . . . 6 (𝜑 → (𝑛 ∈ (1...𝑁) → (𝑧𝐼 → ((𝑧𝑛) = 1 → ((𝑧f − (𝐹𝑧))‘𝑛) = (1 − ((𝐹𝑧)‘𝑛))))))
1551543imp2 1348 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → ((𝑧f − (𝐹𝑧))‘𝑛) = (1 − ((𝐹𝑧)‘𝑛)))
156146, 155eqtrd 2778 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → (((𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))‘𝑧)‘𝑛) = (1 − ((𝐹𝑧)‘𝑛)))
157144, 156breqtrrd 5102 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → 0 ≤ (((𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))‘𝑧)‘𝑛))
1581, 2, 3, 92, 135, 157poimir 35810 . 2 (𝜑 → ∃𝑐𝐼 ((𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))‘𝑐) = ((1...𝑁) × {0}))
159 id 22 . . . . . . . 8 (𝑥 = 𝑐𝑥 = 𝑐)
160 fveq2 6774 . . . . . . . 8 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
161159, 160oveq12d 7293 . . . . . . 7 (𝑥 = 𝑐 → (𝑥f − (𝐹𝑥)) = (𝑐f − (𝐹𝑐)))
162 ovex 7308 . . . . . . 7 (𝑐f − (𝐹𝑐)) ∈ V
163161, 97, 162fvmpt 6875 . . . . . 6 (𝑐𝐼 → ((𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))‘𝑐) = (𝑐f − (𝐹𝑐)))
164163adantl 482 . . . . 5 ((𝜑𝑐𝐼) → ((𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))‘𝑐) = (𝑐f − (𝐹𝑐)))
165164eqeq1d 2740 . . . 4 ((𝜑𝑐𝐼) → (((𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))‘𝑐) = ((1...𝑁) × {0}) ↔ (𝑐f − (𝐹𝑐)) = ((1...𝑁) × {0})))
166 elmapfn 8653 . . . . . . . . . . 11 (𝑐 ∈ ((0[,]1) ↑m (1...𝑁)) → 𝑐 Fn (1...𝑁))
167166, 2eleq2s 2857 . . . . . . . . . 10 (𝑐𝐼𝑐 Fn (1...𝑁))
168167adantl 482 . . . . . . . . 9 ((𝜑𝑐𝐼) → 𝑐 Fn (1...𝑁))
16921ffvelrnda 6961 . . . . . . . . . 10 ((𝜑𝑐𝐼) → (𝐹𝑐) ∈ 𝐼)
170 elmapfn 8653 . . . . . . . . . . 11 ((𝐹𝑐) ∈ ((0[,]1) ↑m (1...𝑁)) → (𝐹𝑐) Fn (1...𝑁))
171170, 2eleq2s 2857 . . . . . . . . . 10 ((𝐹𝑐) ∈ 𝐼 → (𝐹𝑐) Fn (1...𝑁))
172169, 171syl 17 . . . . . . . . 9 ((𝜑𝑐𝐼) → (𝐹𝑐) Fn (1...𝑁))
173 ovexd 7310 . . . . . . . . 9 ((𝜑𝑐𝐼) → (1...𝑁) ∈ V)
174 eqidd 2739 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑐𝑛) = (𝑐𝑛))
175 eqidd 2739 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑐)‘𝑛) = ((𝐹𝑐)‘𝑛))
176168, 172, 173, 173, 27, 174, 175ofval 7544 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑐f − (𝐹𝑐))‘𝑛) = ((𝑐𝑛) − ((𝐹𝑐)‘𝑛)))
177 c0ex 10969 . . . . . . . . . 10 0 ∈ V
178177fvconst2 7079 . . . . . . . . 9 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {0})‘𝑛) = 0)
179178adantl 482 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {0})‘𝑛) = 0)
180176, 179eqeq12d 2754 . . . . . . 7 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑐f − (𝐹𝑐))‘𝑛) = (((1...𝑁) × {0})‘𝑛) ↔ ((𝑐𝑛) − ((𝐹𝑐)‘𝑛)) = 0))
18113, 84sstri 3930 . . . . . . . . . 10 (0[,]1) ⊆ ℂ
182 elmapi 8637 . . . . . . . . . . . 12 (𝑐 ∈ ((0[,]1) ↑m (1...𝑁)) → 𝑐:(1...𝑁)⟶(0[,]1))
183182, 2eleq2s 2857 . . . . . . . . . . 11 (𝑐𝐼𝑐:(1...𝑁)⟶(0[,]1))
184183ffvelrnda 6961 . . . . . . . . . 10 ((𝑐𝐼𝑛 ∈ (1...𝑁)) → (𝑐𝑛) ∈ (0[,]1))
185181, 184sselid 3919 . . . . . . . . 9 ((𝑐𝐼𝑛 ∈ (1...𝑁)) → (𝑐𝑛) ∈ ℂ)
186185adantll 711 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑐𝑛) ∈ ℂ)
187 elmapi 8637 . . . . . . . . . . . 12 ((𝐹𝑐) ∈ ((0[,]1) ↑m (1...𝑁)) → (𝐹𝑐):(1...𝑁)⟶(0[,]1))
188187, 2eleq2s 2857 . . . . . . . . . . 11 ((𝐹𝑐) ∈ 𝐼 → (𝐹𝑐):(1...𝑁)⟶(0[,]1))
189169, 188syl 17 . . . . . . . . . 10 ((𝜑𝑐𝐼) → (𝐹𝑐):(1...𝑁)⟶(0[,]1))
190189ffvelrnda 6961 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑐)‘𝑛) ∈ (0[,]1))
191181, 190sselid 3919 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑐)‘𝑛) ∈ ℂ)
192186, 191subeq0ad 11342 . . . . . . 7 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑐𝑛) − ((𝐹𝑐)‘𝑛)) = 0 ↔ (𝑐𝑛) = ((𝐹𝑐)‘𝑛)))
193180, 192bitrd 278 . . . . . 6 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑐f − (𝐹𝑐))‘𝑛) = (((1...𝑁) × {0})‘𝑛) ↔ (𝑐𝑛) = ((𝐹𝑐)‘𝑛)))
194193ralbidva 3111 . . . . 5 ((𝜑𝑐𝐼) → (∀𝑛 ∈ (1...𝑁)((𝑐f − (𝐹𝑐))‘𝑛) = (((1...𝑁) × {0})‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁)(𝑐𝑛) = ((𝐹𝑐)‘𝑛)))
195168, 172, 173, 173, 27offn 7546 . . . . . 6 ((𝜑𝑐𝐼) → (𝑐f − (𝐹𝑐)) Fn (1...𝑁))
196 fnconstg 6662 . . . . . . 7 (0 ∈ V → ((1...𝑁) × {0}) Fn (1...𝑁))
197177, 196ax-mp 5 . . . . . 6 ((1...𝑁) × {0}) Fn (1...𝑁)
198 eqfnfv 6909 . . . . . 6 (((𝑐f − (𝐹𝑐)) Fn (1...𝑁) ∧ ((1...𝑁) × {0}) Fn (1...𝑁)) → ((𝑐f − (𝐹𝑐)) = ((1...𝑁) × {0}) ↔ ∀𝑛 ∈ (1...𝑁)((𝑐f − (𝐹𝑐))‘𝑛) = (((1...𝑁) × {0})‘𝑛)))
199195, 197, 198sylancl 586 . . . . 5 ((𝜑𝑐𝐼) → ((𝑐f − (𝐹𝑐)) = ((1...𝑁) × {0}) ↔ ∀𝑛 ∈ (1...𝑁)((𝑐f − (𝐹𝑐))‘𝑛) = (((1...𝑁) × {0})‘𝑛)))
200 eqfnfv 6909 . . . . . 6 ((𝑐 Fn (1...𝑁) ∧ (𝐹𝑐) Fn (1...𝑁)) → (𝑐 = (𝐹𝑐) ↔ ∀𝑛 ∈ (1...𝑁)(𝑐𝑛) = ((𝐹𝑐)‘𝑛)))
201168, 172, 200syl2anc 584 . . . . 5 ((𝜑𝑐𝐼) → (𝑐 = (𝐹𝑐) ↔ ∀𝑛 ∈ (1...𝑁)(𝑐𝑛) = ((𝐹𝑐)‘𝑛)))
202194, 199, 2013bitr4d 311 . . . 4 ((𝜑𝑐𝐼) → ((𝑐f − (𝐹𝑐)) = ((1...𝑁) × {0}) ↔ 𝑐 = (𝐹𝑐)))
203165, 202bitrd 278 . . 3 ((𝜑𝑐𝐼) → (((𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))‘𝑐) = ((1...𝑁) × {0}) ↔ 𝑐 = (𝐹𝑐)))
204203rexbidva 3225 . 2 (𝜑 → (∃𝑐𝐼 ((𝑥𝐼 ↦ (𝑥f − (𝐹𝑥)))‘𝑐) = ((1...𝑁) × {0}) ↔ ∃𝑐𝐼 𝑐 = (𝐹𝑐)))
205158, 204mpbid 231 1 (𝜑 → ∃𝑐𝐼 𝑐 = (𝐹𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  {csn 4561   class class class wbr 5074  cmpt 5157   × cxp 5587  ran crn 5590  cres 5591   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  m cmap 8615  cc 10869  cr 10870  0cc0 10871  1c1 10872  *cxr 11008  cle 11010  cmin 11205  -cneg 11206  cn 11973  (,)cioo 13079  [,]cicc 13082  ...cfz 13239  t crest 17131  TopOpenctopn 17132  topGenctg 17148  tcpt 17149  fldccnfld 20597  Topctop 22042  TopOnctopon 22059   Cn ccn 22375   ×t ctx 22711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-ps 18284  df-tsr 18285  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-lp 22287  df-cn 22378  df-cnp 22379  df-t1 22465  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-hmph 22907  df-xms 23473  df-ms 23474  df-tms 23475  df-ii 24040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator