Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomuspgr Structured version   Visualization version   GIF version

Theorem isomuspgr 46581
Description: The isomorphy relation for two simple pseudographs. This corresponds to the definition in [Bollobas] p. 3. (Contributed by AV, 1-Dec-2022.)
Hypotheses
Ref Expression
isomushgr.v 𝑉 = (Vtx‘𝐴)
isomushgr.w 𝑊 = (Vtx‘𝐵)
isomushgr.e 𝐸 = (Edg‘𝐴)
isomushgr.k 𝐾 = (Edg‘𝐵)
Assertion
Ref Expression
isomuspgr ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑎,𝑏,𝑓   𝐸,𝑎,𝑏   𝐾,𝑎,𝑏   𝑉,𝑎,𝑏   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝑊,𝑎,𝑏
Allowed substitution hints:   𝐸(𝑓)   𝐾(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem isomuspgr
Dummy variables 𝑒 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrushgr 28473 . . 3 (𝐴 ∈ USPGraph → 𝐴 ∈ USHGraph)
2 uspgrushgr 28473 . . 3 (𝐵 ∈ USPGraph → 𝐵 ∈ USHGraph)
3 isomushgr.v . . . 4 𝑉 = (Vtx‘𝐴)
4 isomushgr.w . . . 4 𝑊 = (Vtx‘𝐵)
5 isomushgr.e . . . 4 𝐸 = (Edg‘𝐴)
6 isomushgr.k . . . 4 𝐾 = (Edg‘𝐵)
73, 4, 5, 6isomushgr 46573 . . 3 ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)))))
81, 2, 7syl2an 596 . 2 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)))))
9 imaeq2 6055 . . . . . . . . . . . . . . . . . 18 (𝑒 = {𝑎, 𝑏} → (𝑓𝑒) = (𝑓 “ {𝑎, 𝑏}))
10 fveq2 6891 . . . . . . . . . . . . . . . . . 18 (𝑒 = {𝑎, 𝑏} → (𝑔𝑒) = (𝑔‘{𝑎, 𝑏}))
119, 10eqeq12d 2748 . . . . . . . . . . . . . . . . 17 (𝑒 = {𝑎, 𝑏} → ((𝑓𝑒) = (𝑔𝑒) ↔ (𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏})))
1211rspccv 3609 . . . . . . . . . . . . . . . 16 (∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒) → ({𝑎, 𝑏} ∈ 𝐸 → (𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏})))
1312adantl 482 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) → ({𝑎, 𝑏} ∈ 𝐸 → (𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏})))
1413imp 407 . . . . . . . . . . . . . 14 (((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}))
15 f1ofn 6834 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝑉1-1-onto𝑊𝑓 Fn 𝑉)
1615ad3antlr 729 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) → 𝑓 Fn 𝑉)
17 simprl 769 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) → 𝑎𝑉)
18 simprr 771 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
19 fnimapr 6975 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn 𝑉𝑎𝑉𝑏𝑉) → (𝑓 “ {𝑎, 𝑏}) = {(𝑓𝑎), (𝑓𝑏)})
2016, 17, 18, 19syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) → (𝑓 “ {𝑎, 𝑏}) = {(𝑓𝑎), (𝑓𝑏)})
2120eqeq1d 2734 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) → ((𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}) ↔ {(𝑓𝑎), (𝑓𝑏)} = (𝑔‘{𝑎, 𝑏})))
2221adantr 481 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) → ((𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}) ↔ {(𝑓𝑎), (𝑓𝑏)} = (𝑔‘{𝑎, 𝑏})))
2322adantr 481 . . . . . . . . . . . . . . 15 (((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}) ↔ {(𝑓𝑎), (𝑓𝑏)} = (𝑔‘{𝑎, 𝑏})))
24 f1of 6833 . . . . . . . . . . . . . . . . . 18 (𝑔:𝐸1-1-onto𝐾𝑔:𝐸𝐾)
2524ad3antlr 729 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) → 𝑔:𝐸𝐾)
2625ffvelcdmda 7086 . . . . . . . . . . . . . . . 16 (((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑔‘{𝑎, 𝑏}) ∈ 𝐾)
27 eleq1 2821 . . . . . . . . . . . . . . . 16 ({(𝑓𝑎), (𝑓𝑏)} = (𝑔‘{𝑎, 𝑏}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾 ↔ (𝑔‘{𝑎, 𝑏}) ∈ 𝐾))
2826, 27syl5ibrcom 246 . . . . . . . . . . . . . . 15 (((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → ({(𝑓𝑎), (𝑓𝑏)} = (𝑔‘{𝑎, 𝑏}) → {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))
2923, 28sylbid 239 . . . . . . . . . . . . . 14 (((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}) → {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))
3014, 29mpd 15 . . . . . . . . . . . . 13 (((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)
3130exp41 435 . . . . . . . . . . . 12 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) → ((𝑎𝑉𝑏𝑉) → (∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒) → ({𝑎, 𝑏} ∈ 𝐸 → {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
3231com23 86 . . . . . . . . . . 11 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) → (∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒) → ((𝑎𝑉𝑏𝑉) → ({𝑎, 𝑏} ∈ 𝐸 → {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
3332impr 455 . . . . . . . . . 10 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ (𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))) → ((𝑎𝑉𝑏𝑉) → ({𝑎, 𝑏} ∈ 𝐸 → {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)))
3433imp 407 . . . . . . . . 9 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ (𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))) ∧ (𝑎𝑉𝑏𝑉)) → ({𝑎, 𝑏} ∈ 𝐸 → {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))
353, 4, 5, 6isomuspgrlem1 46574 . . . . . . . . 9 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ (𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))) ∧ (𝑎𝑉𝑏𝑉)) → ({(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾 → {𝑎, 𝑏} ∈ 𝐸))
3634, 35impbid 211 . . . . . . . 8 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ (𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))) ∧ (𝑎𝑉𝑏𝑉)) → ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))
3736ralrimivva 3200 . . . . . . 7 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ (𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))) → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))
3837ex 413 . . . . . 6 (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) → ((𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)))
3938exlimdv 1936 . . . . 5 (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) → (∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)))
403, 4, 5, 6isomuspgrlem2 46580 . . . . 5 (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) → (∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾) → ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))))
4139, 40impbid 211 . . . 4 (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) → (∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ↔ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)))
4241pm5.32da 579 . . 3 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → ((𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
4342exbidv 1924 . 2 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))) ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
448, 43bitrd 278 1 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3061  {cpr 4630   class class class wbr 5148  cima 5679   Fn wfn 6538  wf 6539  1-1-ontowf1o 6542  cfv 6543  Vtxcvtx 28294  Edgcedg 28345  USHGraphcushgr 28355  USPGraphcuspgr 28446   IsomGr cisomgr 46566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-n0 12475  df-xnn0 12547  df-z 12561  df-uz 12825  df-fz 13487  df-hash 14293  df-edg 28346  df-uhgr 28356  df-ushgr 28357  df-upgr 28380  df-uspgr 28448  df-isomgr 46568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator