Step | Hyp | Ref
| Expression |
1 | | uspgrushgr 27545 |
. . 3
⊢ (𝐴 ∈ USPGraph → 𝐴 ∈
USHGraph) |
2 | | uspgrushgr 27545 |
. . 3
⊢ (𝐵 ∈ USPGraph → 𝐵 ∈
USHGraph) |
3 | | isomushgr.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐴) |
4 | | isomushgr.w |
. . . 4
⊢ 𝑊 = (Vtx‘𝐵) |
5 | | isomushgr.e |
. . . 4
⊢ 𝐸 = (Edg‘𝐴) |
6 | | isomushgr.k |
. . . 4
⊢ 𝐾 = (Edg‘𝐵) |
7 | 3, 4, 5, 6 | isomushgr 45278 |
. . 3
⊢ ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
8 | 1, 2, 7 | syl2an 596 |
. 2
⊢ ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
9 | | imaeq2 5965 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = {𝑎, 𝑏} → (𝑓 “ 𝑒) = (𝑓 “ {𝑎, 𝑏})) |
10 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = {𝑎, 𝑏} → (𝑔‘𝑒) = (𝑔‘{𝑎, 𝑏})) |
11 | 9, 10 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = {𝑎, 𝑏} → ((𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ (𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}))) |
12 | 11 | rspccv 3558 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑒 ∈
𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒) → ({𝑎, 𝑏} ∈ 𝐸 → (𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}))) |
13 | 12 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → ({𝑎, 𝑏} ∈ 𝐸 → (𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}))) |
14 | 13 | imp 407 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏})) |
15 | | f1ofn 6717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:𝑉–1-1-onto→𝑊 → 𝑓 Fn 𝑉) |
16 | 15 | ad3antlr 728 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑓 Fn 𝑉) |
17 | | simprl 768 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑎 ∈ 𝑉) |
18 | | simprr 770 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) |
19 | | fnimapr 6852 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 Fn 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑓 “ {𝑎, 𝑏}) = {(𝑓‘𝑎), (𝑓‘𝑏)}) |
20 | 16, 17, 18, 19 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑓 “ {𝑎, 𝑏}) = {(𝑓‘𝑎), (𝑓‘𝑏)}) |
21 | 20 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}) ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} = (𝑔‘{𝑎, 𝑏}))) |
22 | 21 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → ((𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}) ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} = (𝑔‘{𝑎, 𝑏}))) |
23 | 22 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}) ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} = (𝑔‘{𝑎, 𝑏}))) |
24 | | f1of 6716 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔:𝐸–1-1-onto→𝐾 → 𝑔:𝐸⟶𝐾) |
25 | 24 | ad3antlr 728 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → 𝑔:𝐸⟶𝐾) |
26 | 25 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑔‘{𝑎, 𝑏}) ∈ 𝐾) |
27 | | eleq1 2826 |
. . . . . . . . . . . . . . . 16
⊢ ({(𝑓‘𝑎), (𝑓‘𝑏)} = (𝑔‘{𝑎, 𝑏}) → ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾 ↔ (𝑔‘{𝑎, 𝑏}) ∈ 𝐾)) |
28 | 26, 27 | syl5ibrcom 246 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → ({(𝑓‘𝑎), (𝑓‘𝑏)} = (𝑔‘{𝑎, 𝑏}) → {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) |
29 | 23, 28 | sylbid 239 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}) → {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) |
30 | 14, 29 | mpd 15 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾) |
31 | 30 | exp41 435 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒) → ({𝑎, 𝑏} ∈ 𝐸 → {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)))) |
32 | 31 | com23 86 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ 𝑔:𝐸–1-1-onto→𝐾) → (∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ({𝑎, 𝑏} ∈ 𝐸 → {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)))) |
33 | 32 | impr 455 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ({𝑎, 𝑏} ∈ 𝐸 → {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾))) |
34 | 33 | imp 407 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ({𝑎, 𝑏} ∈ 𝐸 → {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) |
35 | 3, 4, 5, 6 | isomuspgrlem1 45279 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ({(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾 → {𝑎, 𝑏} ∈ 𝐸)) |
36 | 34, 35 | impbid 211 |
. . . . . . . 8
⊢
(((((𝐴 ∈
USPGraph ∧ 𝐵 ∈
USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) |
37 | 36 | ralrimivva 3123 |
. . . . . . 7
⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ (𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) |
38 | 37 | ex 413 |
. . . . . 6
⊢ (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → ((𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾))) |
39 | 38 | exlimdv 1936 |
. . . . 5
⊢ (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾))) |
40 | 3, 4, 5, 6 | isomuspgrlem2 45285 |
. . . . 5
⊢ (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
41 | 39, 40 | impbid 211 |
. . . 4
⊢ (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) ↔ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾))) |
42 | 41 | pm5.32da 579 |
. . 3
⊢ ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → ((𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)))) |
43 | 42 | exbidv 1924 |
. 2
⊢ ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) →
(∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)))) |
44 | 8, 43 | bitrd 278 |
1
⊢ ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)))) |