Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomuspgr Structured version   Visualization version   GIF version

Theorem isomuspgr 45704
Description: The isomorphy relation for two simple pseudographs. This corresponds to the definition in [Bollobas] p. 3. (Contributed by AV, 1-Dec-2022.)
Hypotheses
Ref Expression
isomushgr.v 𝑉 = (Vtx‘𝐴)
isomushgr.w 𝑊 = (Vtx‘𝐵)
isomushgr.e 𝐸 = (Edg‘𝐴)
isomushgr.k 𝐾 = (Edg‘𝐵)
Assertion
Ref Expression
isomuspgr ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑎,𝑏,𝑓   𝐸,𝑎,𝑏   𝐾,𝑎,𝑏   𝑉,𝑎,𝑏   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝑊,𝑎,𝑏
Allowed substitution hints:   𝐸(𝑓)   𝐾(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem isomuspgr
Dummy variables 𝑒 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrushgr 27833 . . 3 (𝐴 ∈ USPGraph → 𝐴 ∈ USHGraph)
2 uspgrushgr 27833 . . 3 (𝐵 ∈ USPGraph → 𝐵 ∈ USHGraph)
3 isomushgr.v . . . 4 𝑉 = (Vtx‘𝐴)
4 isomushgr.w . . . 4 𝑊 = (Vtx‘𝐵)
5 isomushgr.e . . . 4 𝐸 = (Edg‘𝐴)
6 isomushgr.k . . . 4 𝐾 = (Edg‘𝐵)
73, 4, 5, 6isomushgr 45696 . . 3 ((𝐴 ∈ USHGraph ∧ 𝐵 ∈ USHGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)))))
81, 2, 7syl2an 597 . 2 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)))))
9 imaeq2 5999 . . . . . . . . . . . . . . . . . 18 (𝑒 = {𝑎, 𝑏} → (𝑓𝑒) = (𝑓 “ {𝑎, 𝑏}))
10 fveq2 6829 . . . . . . . . . . . . . . . . . 18 (𝑒 = {𝑎, 𝑏} → (𝑔𝑒) = (𝑔‘{𝑎, 𝑏}))
119, 10eqeq12d 2753 . . . . . . . . . . . . . . . . 17 (𝑒 = {𝑎, 𝑏} → ((𝑓𝑒) = (𝑔𝑒) ↔ (𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏})))
1211rspccv 3570 . . . . . . . . . . . . . . . 16 (∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒) → ({𝑎, 𝑏} ∈ 𝐸 → (𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏})))
1312adantl 483 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) → ({𝑎, 𝑏} ∈ 𝐸 → (𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏})))
1413imp 408 . . . . . . . . . . . . . 14 (((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}))
15 f1ofn 6772 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝑉1-1-onto𝑊𝑓 Fn 𝑉)
1615ad3antlr 729 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) → 𝑓 Fn 𝑉)
17 simprl 769 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) → 𝑎𝑉)
18 simprr 771 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
19 fnimapr 6912 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn 𝑉𝑎𝑉𝑏𝑉) → (𝑓 “ {𝑎, 𝑏}) = {(𝑓𝑎), (𝑓𝑏)})
2016, 17, 18, 19syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) → (𝑓 “ {𝑎, 𝑏}) = {(𝑓𝑎), (𝑓𝑏)})
2120eqeq1d 2739 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) → ((𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}) ↔ {(𝑓𝑎), (𝑓𝑏)} = (𝑔‘{𝑎, 𝑏})))
2221adantr 482 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) → ((𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}) ↔ {(𝑓𝑎), (𝑓𝑏)} = (𝑔‘{𝑎, 𝑏})))
2322adantr 482 . . . . . . . . . . . . . . 15 (((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}) ↔ {(𝑓𝑎), (𝑓𝑏)} = (𝑔‘{𝑎, 𝑏})))
24 f1of 6771 . . . . . . . . . . . . . . . . . 18 (𝑔:𝐸1-1-onto𝐾𝑔:𝐸𝐾)
2524ad3antlr 729 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) → 𝑔:𝐸𝐾)
2625ffvelcdmda 7021 . . . . . . . . . . . . . . . 16 (((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑔‘{𝑎, 𝑏}) ∈ 𝐾)
27 eleq1 2825 . . . . . . . . . . . . . . . 16 ({(𝑓𝑎), (𝑓𝑏)} = (𝑔‘{𝑎, 𝑏}) → ({(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾 ↔ (𝑔‘{𝑎, 𝑏}) ∈ 𝐾))
2826, 27syl5ibrcom 247 . . . . . . . . . . . . . . 15 (((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → ({(𝑓𝑎), (𝑓𝑏)} = (𝑔‘{𝑎, 𝑏}) → {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))
2923, 28sylbid 239 . . . . . . . . . . . . . 14 (((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → ((𝑓 “ {𝑎, 𝑏}) = (𝑔‘{𝑎, 𝑏}) → {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))
3014, 29mpd 15 . . . . . . . . . . . . 13 (((((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) ∧ (𝑎𝑉𝑏𝑉)) ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ∧ {𝑎, 𝑏} ∈ 𝐸) → {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)
3130exp41 436 . . . . . . . . . . . 12 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) → ((𝑎𝑉𝑏𝑉) → (∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒) → ({𝑎, 𝑏} ∈ 𝐸 → {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
3231com23 86 . . . . . . . . . . 11 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ 𝑔:𝐸1-1-onto𝐾) → (∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒) → ((𝑎𝑉𝑏𝑉) → ({𝑎, 𝑏} ∈ 𝐸 → {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
3332impr 456 . . . . . . . . . 10 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ (𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))) → ((𝑎𝑉𝑏𝑉) → ({𝑎, 𝑏} ∈ 𝐸 → {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)))
3433imp 408 . . . . . . . . 9 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ (𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))) ∧ (𝑎𝑉𝑏𝑉)) → ({𝑎, 𝑏} ∈ 𝐸 → {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))
353, 4, 5, 6isomuspgrlem1 45697 . . . . . . . . 9 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ (𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))) ∧ (𝑎𝑉𝑏𝑉)) → ({(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾 → {𝑎, 𝑏} ∈ 𝐸))
3634, 35impbid 211 . . . . . . . 8 (((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ (𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))) ∧ (𝑎𝑉𝑏𝑉)) → ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))
3736ralrimivva 3194 . . . . . . 7 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ (𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))) → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))
3837ex 414 . . . . . 6 (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) → ((𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)))
3938exlimdv 1936 . . . . 5 (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) → (∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)))
403, 4, 5, 6isomuspgrlem2 45703 . . . . 5 (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) → (∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾) → ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))))
4139, 40impbid 211 . . . 4 (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) → (∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ↔ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)))
4241pm5.32da 580 . . 3 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → ((𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
4342exbidv 1924 . 2 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))) ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
448, 43bitrd 279 1 ((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wex 1781  wcel 2106  wral 3062  {cpr 4579   class class class wbr 5096  cima 5627   Fn wfn 6478  wf 6479  1-1-ontowf1o 6482  cfv 6483  Vtxcvtx 27654  Edgcedg 27705  USHGraphcushgr 27715  USPGraphcuspgr 27806   IsomGr cisomgr 45689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-2o 8372  df-oadd 8375  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-dju 9762  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-nn 12079  df-2 12141  df-n0 12339  df-xnn0 12411  df-z 12425  df-uz 12688  df-fz 13345  df-hash 14150  df-edg 27706  df-uhgr 27716  df-ushgr 27717  df-upgr 27740  df-uspgr 27808  df-isomgr 45691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator