MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrhashecclwwlk Structured version   Visualization version   GIF version

Theorem umgrhashecclwwlk 28343
Description: The size of every equivalence class of the equivalence relation over the set of closed walks (defined as words) with a fixed length which is a prime number equals this length (in an undirected simple graph). (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
umgrhashecclwwlk ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 ∈ (𝑊 / ) → (♯‘𝑈) = 𝑁))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊   𝑛,𝐺,𝑢   𝑈,𝑛,𝑢
Allowed substitution hints:   (𝑢,𝑡,𝑛)   𝑈(𝑡)   𝐺(𝑡)

Proof of Theorem umgrhashecclwwlk
Dummy variables 𝑥 𝑦 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erclwwlkn.w . . . . 5 𝑊 = (𝑁 ClWWalksN 𝐺)
2 erclwwlkn.r . . . . 5 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2eclclwwlkn1 28340 . . . 4 (𝑈 ∈ (𝑊 / ) → (𝑈 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
4 rabeq 3408 . . . . . . . . . 10 (𝑊 = (𝑁 ClWWalksN 𝐺) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
51, 4mp1i 13 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
6 prmnn 16307 . . . . . . . . . . . 12 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
76nnnn0d 12223 . . . . . . . . . . 11 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ0)
87adantl 481 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ0)
91eleq2i 2830 . . . . . . . . . . 11 (𝑥𝑊𝑥 ∈ (𝑁 ClWWalksN 𝐺))
109biimpi 215 . . . . . . . . . 10 (𝑥𝑊𝑥 ∈ (𝑁 ClWWalksN 𝐺))
11 clwwlknscsh 28327 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
128, 10, 11syl2an 595 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
135, 12eqtrd 2778 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
1413eqeq2d 2749 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
156adantl 481 . . . . . . . . . . . 12 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ)
16 simpll 763 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑥 ∈ Word (Vtx‘𝐺))
17 elnnne0 12177 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
18 eqeq1 2742 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = (♯‘𝑥) → (𝑁 = 0 ↔ (♯‘𝑥) = 0))
1918eqcoms 2746 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑥) = 𝑁 → (𝑁 = 0 ↔ (♯‘𝑥) = 0))
20 hasheq0 14006 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ Word (Vtx‘𝐺) → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
2119, 20sylan9bbr 510 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 = 0 ↔ 𝑥 = ∅))
2221necon3bid 2987 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 ≠ 0 ↔ 𝑥 ≠ ∅))
2322biimpcd 248 . . . . . . . . . . . . . . . . . 18 (𝑁 ≠ 0 → ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → 𝑥 ≠ ∅))
2417, 23simplbiim 504 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → 𝑥 ≠ ∅))
2524impcom 407 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑥 ≠ ∅)
26 simplr 765 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → (♯‘𝑥) = 𝑁)
2726eqcomd 2744 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑁 = (♯‘𝑥))
2816, 25, 273jca 1126 . . . . . . . . . . . . . . 15 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)))
2928ex 412 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 ∈ ℕ → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
30 eqid 2738 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
3130clwwlknbp 28300 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
3229, 31syl11 33 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
339, 32syl5bi 241 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
3415, 33syl 17 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
3534imp 406 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)))
36 scshwfzeqfzo 14467 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
3735, 36syl 17 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
3837eqeq2d 2749 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
39 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}))
40 simprl 767 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → 𝐺 ∈ UMGraph)
41 prmuz2 16329 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑥) ∈ ℙ → (♯‘𝑥) ∈ (ℤ‘2))
4241adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (♯‘𝑥) ∈ (ℤ‘2))
4342adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → (♯‘𝑥) ∈ (ℤ‘2))
44 simplr 765 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺))
45 umgr2cwwkdifex 28330 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ (ℤ‘2) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) → ∃𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) ≠ (𝑥‘0))
4640, 43, 44, 45syl3anc 1369 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → ∃𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) ≠ (𝑥‘0))
47 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
4847eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚)))
4948cbvrexvw 3373 . . . . . . . . . . . . . . . . . . . 20 (∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))
50 eqeq1 2742 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑢 → (𝑦 = (𝑥 cyclShift 𝑚) ↔ 𝑢 = (𝑥 cyclShift 𝑚)))
51 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = (𝑥 cyclShift 𝑚) ↔ (𝑥 cyclShift 𝑚) = 𝑢)
5250, 51bitrdi 286 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑢 → (𝑦 = (𝑥 cyclShift 𝑚) ↔ (𝑥 cyclShift 𝑚) = 𝑢))
5352rexbidv 3225 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑢 → (∃𝑚 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢))
5449, 53syl5bb 282 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → (∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢))
5554cbvrabv 3416 . . . . . . . . . . . . . . . . . 18 {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} = {𝑢 ∈ Word (Vtx‘𝐺) ∣ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢}
5655cshwshashnsame 16733 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) ≠ (𝑥‘0) → (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥)))
5756ad2ant2rl 745 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → (∃𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) ≠ (𝑥‘0) → (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥)))
5846, 57mpd 15 . . . . . . . . . . . . . . 15 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥))
5939, 58sylan9eqr 2801 . . . . . . . . . . . . . 14 ((((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → (♯‘𝑈) = (♯‘𝑥))
6059exp41 434 . . . . . . . . . . . . 13 (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥)))))
6160adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥)))))
62 oveq1 7262 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → (𝑁 ClWWalksN 𝐺) = ((♯‘𝑥) ClWWalksN 𝐺))
6362eleq2d 2824 . . . . . . . . . . . . . . 15 (𝑁 = (♯‘𝑥) → (𝑥 ∈ (𝑁 ClWWalksN 𝐺) ↔ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)))
64 eleq1 2826 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → (𝑁 ∈ ℙ ↔ (♯‘𝑥) ∈ ℙ))
6564anbi2d 628 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ↔ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)))
66 oveq2 7263 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = (♯‘𝑥) → (0..^𝑁) = (0..^(♯‘𝑥)))
6766rexeqdv 3340 . . . . . . . . . . . . . . . . . . 19 (𝑁 = (♯‘𝑥) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
6867rabbidv 3404 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑥) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)})
6968eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}))
70 eqeq2 2750 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → ((♯‘𝑈) = 𝑁 ↔ (♯‘𝑈) = (♯‘𝑥)))
7169, 70imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → ((𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁) ↔ (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥))))
7265, 71imbi12d 344 . . . . . . . . . . . . . . 15 (𝑁 = (♯‘𝑥) → (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁)) ↔ ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥)))))
7363, 72imbi12d 344 . . . . . . . . . . . . . 14 (𝑁 = (♯‘𝑥) → ((𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))) ↔ (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥))))))
7473eqcoms 2746 . . . . . . . . . . . . 13 ((♯‘𝑥) = 𝑁 → ((𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))) ↔ (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥))))))
7574adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → ((𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))) ↔ (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥))))))
7661, 75mpbird 256 . . . . . . . . . . 11 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))))
7731, 76mpcom 38 . . . . . . . . . 10 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁)))
7877, 1eleq2s 2857 . . . . . . . . 9 (𝑥𝑊 → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁)))
7978impcom 407 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))
8038, 79sylbid 239 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))
8114, 80sylbid 239 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))
8281rexlimdva 3212 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))
8382com12 32 . . . 4 (∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑈) = 𝑁))
843, 83syl6bi 252 . . 3 (𝑈 ∈ (𝑊 / ) → (𝑈 ∈ (𝑊 / ) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑈) = 𝑁)))
8584pm2.43i 52 . 2 (𝑈 ∈ (𝑊 / ) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑈) = 𝑁))
8685com12 32 1 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 ∈ (𝑊 / ) → (♯‘𝑈) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  c0 4253  {copab 5132  cfv 6418  (class class class)co 7255   / cqs 8455  0cc0 10802  cn 11903  2c2 11958  0cn0 12163  cuz 12511  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   cyclShift ccsh 14429  cprime 16304  Vtxcvtx 27269  UMGraphcumgr 27354   ClWWalksN cclwwlkn 28289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-substr 14282  df-pfx 14312  df-reps 14410  df-csh 14430  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-gcd 16130  df-prm 16305  df-phi 16395  df-edg 27321  df-umgr 27356  df-clwwlk 28247  df-clwwlkn 28290
This theorem is referenced by:  fusgrhashclwwlkn  28344
  Copyright terms: Public domain W3C validator