MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrhashecclwwlk Structured version   Visualization version   GIF version

Theorem umgrhashecclwwlk 27532
Description: The size of every equivalence class of the equivalence relation over the set of closed walks (defined as words) with a fixed length which is a prime number equals this length (in an undirected simple graph). (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
umgrhashecclwwlk ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 ∈ (𝑊 / ) → (♯‘𝑈) = 𝑁))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊   𝑛,𝐺,𝑢   𝑈,𝑛,𝑢
Allowed substitution hints:   (𝑢,𝑡,𝑛)   𝑈(𝑡)   𝐺(𝑡)

Proof of Theorem umgrhashecclwwlk
Dummy variables 𝑥 𝑦 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erclwwlkn.w . . . . 5 𝑊 = (𝑁 ClWWalksN 𝐺)
2 erclwwlkn.r . . . . 5 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2eclclwwlkn1 27529 . . . 4 (𝑈 ∈ (𝑊 / ) → (𝑈 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
4 rabeq 3423 . . . . . . . . . 10 (𝑊 = (𝑁 ClWWalksN 𝐺) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
51, 4mp1i 13 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
6 prmnn 15835 . . . . . . . . . . . 12 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
76nnnn0d 11792 . . . . . . . . . . 11 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ0)
87adantl 482 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ0)
91eleq2i 2872 . . . . . . . . . . 11 (𝑥𝑊𝑥 ∈ (𝑁 ClWWalksN 𝐺))
109biimpi 217 . . . . . . . . . 10 (𝑥𝑊𝑥 ∈ (𝑁 ClWWalksN 𝐺))
11 clwwlknscsh 27516 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
128, 10, 11syl2an 595 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
135, 12eqtrd 2829 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
1413eqeq2d 2803 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
156adantl 482 . . . . . . . . . . . 12 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ)
16 simpll 763 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑥 ∈ Word (Vtx‘𝐺))
17 elnnne0 11748 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
18 eqeq1 2797 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = (♯‘𝑥) → (𝑁 = 0 ↔ (♯‘𝑥) = 0))
1918eqcoms 2801 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑥) = 𝑁 → (𝑁 = 0 ↔ (♯‘𝑥) = 0))
20 hasheq0 13562 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ Word (Vtx‘𝐺) → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
2119, 20sylan9bbr 511 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 = 0 ↔ 𝑥 = ∅))
2221necon3bid 3026 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 ≠ 0 ↔ 𝑥 ≠ ∅))
2322biimpcd 250 . . . . . . . . . . . . . . . . . 18 (𝑁 ≠ 0 → ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → 𝑥 ≠ ∅))
2417, 23simplbiim 505 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → 𝑥 ≠ ∅))
2524impcom 408 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑥 ≠ ∅)
26 simplr 765 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → (♯‘𝑥) = 𝑁)
2726eqcomd 2799 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑁 = (♯‘𝑥))
2816, 25, 273jca 1119 . . . . . . . . . . . . . . 15 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)))
2928ex 413 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 ∈ ℕ → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
30 eqid 2793 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
3130clwwlknbp 27488 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
3229, 31syl11 33 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
339, 32syl5bi 243 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
3415, 33syl 17 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
3534imp 407 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)))
36 scshwfzeqfzo 14012 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
3735, 36syl 17 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
3837eqeq2d 2803 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
39 fveq2 6530 . . . . . . . . . . . . . . 15 (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}))
40 simprl 767 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → 𝐺 ∈ UMGraph)
41 prmuz2 15857 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑥) ∈ ℙ → (♯‘𝑥) ∈ (ℤ‘2))
4241adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (♯‘𝑥) ∈ (ℤ‘2))
4342adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → (♯‘𝑥) ∈ (ℤ‘2))
44 simplr 765 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺))
45 umgr2cwwkdifex 27519 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ (ℤ‘2) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) → ∃𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) ≠ (𝑥‘0))
4640, 43, 44, 45syl3anc 1362 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → ∃𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) ≠ (𝑥‘0))
47 oveq2 7015 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
4847eqeq2d 2803 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚)))
4948cbvrexv 3401 . . . . . . . . . . . . . . . . . . . 20 (∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))
50 eqeq1 2797 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑢 → (𝑦 = (𝑥 cyclShift 𝑚) ↔ 𝑢 = (𝑥 cyclShift 𝑚)))
51 eqcom 2800 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = (𝑥 cyclShift 𝑚) ↔ (𝑥 cyclShift 𝑚) = 𝑢)
5250, 51syl6bb 288 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑢 → (𝑦 = (𝑥 cyclShift 𝑚) ↔ (𝑥 cyclShift 𝑚) = 𝑢))
5352rexbidv 3257 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑢 → (∃𝑚 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑚) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢))
5449, 53syl5bb 284 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → (∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢))
5554cbvrabv 3429 . . . . . . . . . . . . . . . . . 18 {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} = {𝑢 ∈ Word (Vtx‘𝐺) ∣ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢}
5655cshwshashnsame 16254 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) ≠ (𝑥‘0) → (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥)))
5756ad2ant2rl 745 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → (∃𝑖 ∈ (0..^(♯‘𝑥))(𝑥𝑖) ≠ (𝑥‘0) → (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥)))
5846, 57mpd 15 . . . . . . . . . . . . . . 15 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → (♯‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥))
5939, 58sylan9eqr 2851 . . . . . . . . . . . . . 14 ((((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → (♯‘𝑈) = (♯‘𝑥))
6059exp41 435 . . . . . . . . . . . . 13 (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥)))))
6160adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥)))))
62 oveq1 7014 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → (𝑁 ClWWalksN 𝐺) = ((♯‘𝑥) ClWWalksN 𝐺))
6362eleq2d 2866 . . . . . . . . . . . . . . 15 (𝑁 = (♯‘𝑥) → (𝑥 ∈ (𝑁 ClWWalksN 𝐺) ↔ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)))
64 eleq1 2868 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → (𝑁 ∈ ℙ ↔ (♯‘𝑥) ∈ ℙ))
6564anbi2d 628 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ↔ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)))
66 oveq2 7015 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = (♯‘𝑥) → (0..^𝑁) = (0..^(♯‘𝑥)))
6766rexeqdv 3373 . . . . . . . . . . . . . . . . . . 19 (𝑁 = (♯‘𝑥) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
6867rabbidv 3420 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑥) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)})
6968eqeq2d 2803 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}))
70 eqeq2 2804 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → ((♯‘𝑈) = 𝑁 ↔ (♯‘𝑈) = (♯‘𝑥)))
7169, 70imbi12d 346 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → ((𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁) ↔ (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥))))
7265, 71imbi12d 346 . . . . . . . . . . . . . . 15 (𝑁 = (♯‘𝑥) → (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁)) ↔ ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥)))))
7363, 72imbi12d 346 . . . . . . . . . . . . . 14 (𝑁 = (♯‘𝑥) → ((𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))) ↔ (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥))))))
7473eqcoms 2801 . . . . . . . . . . . . 13 ((♯‘𝑥) = 𝑁 → ((𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))) ↔ (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥))))))
7574adantl 482 . . . . . . . . . . . 12 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → ((𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))) ↔ (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥))))))
7661, 75mpbird 258 . . . . . . . . . . 11 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))))
7731, 76mpcom 38 . . . . . . . . . 10 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁)))
7877, 1eleq2s 2899 . . . . . . . . 9 (𝑥𝑊 → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁)))
7978impcom 408 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))
8038, 79sylbid 241 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))
8114, 80sylbid 241 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))
8281rexlimdva 3244 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))
8382com12 32 . . . 4 (∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑈) = 𝑁))
843, 83syl6bi 254 . . 3 (𝑈 ∈ (𝑊 / ) → (𝑈 ∈ (𝑊 / ) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑈) = 𝑁)))
8584pm2.43i 52 . 2 (𝑈 ∈ (𝑊 / ) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑈) = 𝑁))
8685com12 32 1 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 ∈ (𝑊 / ) → (♯‘𝑈) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1078   = wceq 1520  wcel 2079  wne 2982  wrex 3104  {crab 3107  c0 4206  {copab 5018  cfv 6217  (class class class)co 7007   / cqs 8129  0cc0 10372  cn 11475  2c2 11529  0cn0 11734  cuz 12082  ...cfz 12731  ..^cfzo 12872  chash 13528  Word cword 13695   cyclShift ccsh 13974  cprime 15832  Vtxcvtx 26452  UMGraphcumgr 26537   ClWWalksN cclwwlkn 27477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-disj 4925  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-er 8130  df-ec 8132  df-qs 8136  df-map 8249  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-sup 8742  df-inf 8743  df-oi 8810  df-dju 9165  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-n0 11735  df-xnn0 11805  df-z 11819  df-uz 12083  df-rp 12229  df-ico 12583  df-fz 12732  df-fzo 12873  df-fl 13000  df-mod 13076  df-seq 13208  df-exp 13268  df-hash 13529  df-word 13696  df-lsw 13749  df-concat 13757  df-substr 13827  df-pfx 13857  df-reps 13955  df-csh 13975  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-clim 14667  df-sum 14865  df-dvds 15429  df-gcd 15665  df-prm 15833  df-phi 15920  df-edg 26504  df-umgr 26539  df-clwwlk 27435  df-clwwlkn 27478
This theorem is referenced by:  fusgrhashclwwlkn  27533
  Copyright terms: Public domain W3C validator