MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrhashecclwwlk Structured version   Visualization version   GIF version

Theorem umgrhashecclwwlk 29320
Description: The size of every equivalence class of the equivalence relation over the set of closed walks (defined as words) with a fixed length which is a prime number equals this length (in an undirected simple graph). (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r ∌ = {⟚𝑡, 𝑢⟩ ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
umgrhashecclwwlk ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 ∈ (𝑊 / ∌ ) → (♯‘𝑈) = 𝑁))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊   𝑛,𝐺,𝑢   𝑈,𝑛,𝑢
Allowed substitution hints:   ∌ (𝑢,𝑡,𝑛)   𝑈(𝑡)   𝐺(𝑡)

Proof of Theorem umgrhashecclwwlk
Dummy variables 𝑥 𝑊 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erclwwlkn.w . . . . 5 𝑊 = (𝑁 ClWWalksN 𝐺)
2 erclwwlkn.r . . . . 5 ∌ = {⟚𝑡, 𝑢⟩ ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2eclclwwlkn1 29317 . . . 4 (𝑈 ∈ (𝑊 / ∌ ) → (𝑈 ∈ (𝑊 / ∌ ) ↔ ∃𝑥 ∈ 𝑊 𝑈 = {𝑊 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)}))
4 rabeq 3446 . . . . . . . . . 10 (𝑊 = (𝑁 ClWWalksN 𝐺) → {𝑊 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)} = {𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)})
51, 4mp1i 13 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ 𝑊) → {𝑊 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)} = {𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)})
6 prmnn 16607 . . . . . . . . . . . 12 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
76nnnn0d 12528 . . . . . . . . . . 11 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ0)
87adantl 482 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ0)
91eleq2i 2825 . . . . . . . . . . 11 (𝑥 ∈ 𝑊 ↔ 𝑥 ∈ (𝑁 ClWWalksN 𝐺))
109biimpi 215 . . . . . . . . . 10 (𝑥 ∈ 𝑊 → 𝑥 ∈ (𝑁 ClWWalksN 𝐺))
11 clwwlknscsh 29304 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)} = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)})
128, 10, 11syl2an 596 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ 𝑊) → {𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)} = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)})
135, 12eqtrd 2772 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ 𝑊) → {𝑊 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)} = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)})
1413eqeq2d 2743 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ 𝑊) → (𝑈 = {𝑊 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)}))
156adantl 482 . . . . . . . . . . . 12 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ)
16 simpll 765 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑥 ∈ Word (Vtx‘𝐺))
17 elnnne0 12482 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0))
18 eqeq1 2736 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = (♯‘𝑥) → (𝑁 = 0 ↔ (♯‘𝑥) = 0))
1918eqcoms 2740 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑥) = 𝑁 → (𝑁 = 0 ↔ (♯‘𝑥) = 0))
20 hasheq0 14319 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ Word (Vtx‘𝐺) → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
2119, 20sylan9bbr 511 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 = 0 ↔ 𝑥 = ∅))
2221necon3bid 2985 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 ≠ 0 ↔ 𝑥 ≠ ∅))
2322biimpcd 248 . . . . . . . . . . . . . . . . . 18 (𝑁 ≠ 0 → ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → 𝑥 ≠ ∅))
2417, 23simplbiim 505 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → 𝑥 ≠ ∅))
2524impcom 408 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑥 ≠ ∅)
26 simplr 767 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → (♯‘𝑥) = 𝑁)
2726eqcomd 2738 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑁 = (♯‘𝑥))
2816, 25, 273jca 1128 . . . . . . . . . . . . . . 15 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)))
2928ex 413 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑁 ∈ ℕ → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
30 eqid 2732 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
3130clwwlknbp 29277 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
3229, 31syl11 33 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
339, 32biimtrid 241 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑥 ∈ 𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
3415, 33syl 17 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑥 ∈ 𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥))))
3534imp 407 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ 𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)))
36 scshwfzeqfzo 14773 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (♯‘𝑥)) → {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)} = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛)})
3735, 36syl 17 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ 𝑊) → {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)} = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛)})
3837eqeq2d 2743 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ 𝑊) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛)}))
39 fveq2 6888 . . . . . . . . . . . . . . 15 (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘{𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)}))
40 simprl 769 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → 𝐺 ∈ UMGraph)
41 prmuz2 16629 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑥) ∈ ℙ → (♯‘𝑥) ∈ (℀≥‘2))
4241adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (♯‘𝑥) ∈ (℀≥‘2))
4342adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → (♯‘𝑥) ∈ (℀≥‘2))
44 simplr 767 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺))
45 umgr2cwwkdifex 29307 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ (℀≥‘2) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) → ∃𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) ≠ (𝑥‘0))
4640, 43, 44, 45syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → ∃𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) ≠ (𝑥‘0))
47 oveq2 7413 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
4847eqeq2d 2743 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (𝑊 = (𝑥 cyclShift 𝑛) ↔ 𝑊 = (𝑥 cyclShift 𝑚)))
4948cbvrexvw 3235 . . . . . . . . . . . . . . . . . . . 20 (∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑚))
50 eqeq1 2736 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 = 𝑢 → (𝑊 = (𝑥 cyclShift 𝑚) ↔ 𝑢 = (𝑥 cyclShift 𝑚)))
51 eqcom 2739 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = (𝑥 cyclShift 𝑚) ↔ (𝑥 cyclShift 𝑚) = 𝑢)
5250, 51bitrdi 286 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 = 𝑢 → (𝑊 = (𝑥 cyclShift 𝑚) ↔ (𝑥 cyclShift 𝑚) = 𝑢))
5352rexbidv 3178 . . . . . . . . . . . . . . . . . . . 20 (𝑊 = 𝑢 → (∃𝑚 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑚) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢))
5449, 53bitrid 282 . . . . . . . . . . . . . . . . . . 19 (𝑊 = 𝑢 → (∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢))
5554cbvrabv 3442 . . . . . . . . . . . . . . . . . 18 {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)} = {𝑢 ∈ Word (Vtx‘𝐺) ∣ ∃𝑚 ∈ (0..^(♯‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢}
5655cshwshashnsame 17033 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) ∈ ℙ) → (∃𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) ≠ (𝑥‘0) → (♯‘{𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥)))
5756ad2ant2rl 747 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → (∃𝑖 ∈ (0..^(♯‘𝑥))(𝑥‘𝑖) ≠ (𝑥‘0) → (♯‘{𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥)))
5846, 57mpd 15 . . . . . . . . . . . . . . 15 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) → (♯‘{𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)}) = (♯‘𝑥))
5939, 58sylan9eqr 2794 . . . . . . . . . . . . . 14 ((((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)) ∧ 𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)}) → (♯‘𝑈) = (♯‘𝑥))
6059exp41 435 . . . . . . . . . . . . 13 (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥)))))
6160adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥)))))
62 oveq1 7412 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → (𝑁 ClWWalksN 𝐺) = ((♯‘𝑥) ClWWalksN 𝐺))
6362eleq2d 2819 . . . . . . . . . . . . . . 15 (𝑁 = (♯‘𝑥) → (𝑥 ∈ (𝑁 ClWWalksN 𝐺) ↔ 𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺)))
64 eleq1 2821 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → (𝑁 ∈ ℙ ↔ (♯‘𝑥) ∈ ℙ))
6564anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ↔ (𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ)))
66 oveq2 7413 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = (♯‘𝑥) → (0..^𝑁) = (0..^(♯‘𝑥)))
6766rexeqdv 3326 . . . . . . . . . . . . . . . . . . 19 (𝑁 = (♯‘𝑥) → (∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)))
6867rabbidv 3440 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑥) → {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛)} = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)})
6968eqeq2d 2743 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)}))
70 eqeq2 2744 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → ((♯‘𝑈) = 𝑁 ↔ (♯‘𝑈) = (♯‘𝑥)))
7169, 70imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → ((𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁) ↔ (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥))))
7265, 71imbi12d 344 . . . . . . . . . . . . . . 15 (𝑁 = (♯‘𝑥) → (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁)) ↔ ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥)))))
7363, 72imbi12d 344 . . . . . . . . . . . . . 14 (𝑁 = (♯‘𝑥) → ((𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))) ↔ (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥))))))
7473eqcoms 2740 . . . . . . . . . . . . 13 ((♯‘𝑥) = 𝑁 → ((𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))) ↔ (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥))))))
7574adantl 482 . . . . . . . . . . . 12 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → ((𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))) ↔ (𝑥 ∈ ((♯‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (♯‘𝑥) ∈ ℙ) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(♯‘𝑥))𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = (♯‘𝑥))))))
7661, 75mpbird 256 . . . . . . . . . . 11 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))))
7731, 76mpcom 38 . . . . . . . . . 10 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁)))
7877, 1eleq2s 2851 . . . . . . . . 9 (𝑥 ∈ 𝑊 → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁)))
7978impcom 408 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ 𝑊) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))
8038, 79sylbid 239 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ 𝑊) → (𝑈 = {𝑊 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))
8114, 80sylbid 239 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥 ∈ 𝑊) → (𝑈 = {𝑊 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))
8281rexlimdva 3155 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (∃𝑥 ∈ 𝑊 𝑈 = {𝑊 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)} → (♯‘𝑈) = 𝑁))
8382com12 32 . . . 4 (∃𝑥 ∈ 𝑊 𝑈 = {𝑊 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑊 = (𝑥 cyclShift 𝑛)} → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑈) = 𝑁))
843, 83syl6bi 252 . . 3 (𝑈 ∈ (𝑊 / ∌ ) → (𝑈 ∈ (𝑊 / ∌ ) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑈) = 𝑁)))
8584pm2.43i 52 . 2 (𝑈 ∈ (𝑊 / ∌ ) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (♯‘𝑈) = 𝑁))
8685com12 32 1 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 ∈ (𝑊 / ∌ ) → (♯‘𝑈) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   ≠ wne 2940  âˆƒwrex 3070  {crab 3432  âˆ…c0 4321  {copab 5209  â€˜cfv 6540  (class class class)co 7405   / cqs 8698  0cc0 11106  â„•cn 12208  2c2 12263  â„•0cn0 12468  â„€â‰¥cuz 12818  ...cfz 13480  ..^cfzo 13623  â™¯chash 14286  Word cword 14460   cyclShift ccsh 14734  â„™cprime 16604  Vtxcvtx 28245  UMGraphcumgr 28330   ClWWalksN cclwwlkn 29266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-substr 14587  df-pfx 14617  df-reps 14715  df-csh 14735  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-dvds 16194  df-gcd 16432  df-prm 16605  df-phi 16695  df-edg 28297  df-umgr 28332  df-clwwlk 29224  df-clwwlkn 29267
This theorem is referenced by:  fusgrhashclwwlkn  29321
  Copyright terms: Public domain W3C validator