Step | Hyp | Ref
| Expression |
1 | | oveq1 7412 |
. . . . . . . . 9
β’ (π¦ = (π§ cyclShift π) β (π¦ cyclShift π) = ((π§ cyclShift π) cyclShift π)) |
2 | 1 | eqeq2d 2743 |
. . . . . . . 8
β’ (π¦ = (π§ cyclShift π) β (π₯ = (π¦ cyclShift π) β π₯ = ((π§ cyclShift π) cyclShift π))) |
3 | 2 | anbi2d 629 |
. . . . . . 7
β’ (π¦ = (π§ cyclShift π) β ((π β (0...(β―βπ¦)) β§ π₯ = (π¦ cyclShift π)) β (π β (0...(β―βπ¦)) β§ π₯ = ((π§ cyclShift π) cyclShift π)))) |
4 | 3 | adantr 481 |
. . . . . 6
β’ ((π¦ = (π§ cyclShift π) β§ π β (0...(β―βπ§))) β ((π β (0...(β―βπ¦)) β§ π₯ = (π¦ cyclShift π)) β (π β (0...(β―βπ¦)) β§ π₯ = ((π§ cyclShift π) cyclShift π)))) |
5 | | elfznn0 13590 |
. . . . . . . . . . . . . . . . 17
β’ (π β
(0...(β―βπ§))
β π β
β0) |
6 | | elfznn0 13590 |
. . . . . . . . . . . . . . . . 17
β’ (π β
(0...(β―βπ¦))
β π β
β0) |
7 | | nn0addcl 12503 |
. . . . . . . . . . . . . . . . 17
β’ ((π β β0
β§ π β
β0) β (π + π) β
β0) |
8 | 5, 6, 7 | syl2anr 597 |
. . . . . . . . . . . . . . . 16
β’ ((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β (π + π) β
β0) |
9 | 8 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ ((π + π) β€ (β―βπ§) β§ π)) β (π + π) β
β0) |
10 | | elfz3nn0 13591 |
. . . . . . . . . . . . . . . 16
β’ (π β
(0...(β―βπ§))
β (β―βπ§)
β β0) |
11 | 10 | ad2antlr 725 |
. . . . . . . . . . . . . . 15
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ ((π + π) β€ (β―βπ§) β§ π)) β (β―βπ§) β
β0) |
12 | | simprl 769 |
. . . . . . . . . . . . . . 15
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ ((π + π) β€ (β―βπ§) β§ π)) β (π + π) β€ (β―βπ§)) |
13 | | elfz2nn0 13588 |
. . . . . . . . . . . . . . 15
β’ ((π + π) β (0...(β―βπ§)) β ((π + π) β β0 β§
(β―βπ§) β
β0 β§ (π + π) β€ (β―βπ§))) |
14 | 9, 11, 12, 13 | syl3anbrc 1343 |
. . . . . . . . . . . . . 14
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ ((π + π) β€ (β―βπ§) β§ π)) β (π + π) β (0...(β―βπ§))) |
15 | 14 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ ((π + π) β€ (β―βπ§) β§ π)) β§ π₯ = ((π§ cyclShift π) cyclShift π)) β (π + π) β (0...(β―βπ§))) |
16 | | cshwcsh2id.1 |
. . . . . . . . . . . . . . . . . 18
β’ (π β π§ β Word π) |
17 | 16 | adantl 482 |
. . . . . . . . . . . . . . . . 17
β’ (((π + π) β€ (β―βπ§) β§ π) β π§ β Word π) |
18 | 17 | adantl 482 |
. . . . . . . . . . . . . . . 16
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ ((π + π) β€ (β―βπ§) β§ π)) β π§ β Word π) |
19 | | elfzelz 13497 |
. . . . . . . . . . . . . . . . 17
β’ (π β
(0...(β―βπ§))
β π β
β€) |
20 | 19 | ad2antlr 725 |
. . . . . . . . . . . . . . . 16
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ ((π + π) β€ (β―βπ§) β§ π)) β π β β€) |
21 | | elfzelz 13497 |
. . . . . . . . . . . . . . . . . 18
β’ (π β
(0...(β―βπ¦))
β π β
β€) |
22 | 21 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ ((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β π β
β€) |
23 | 22 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ ((π + π) β€ (β―βπ§) β§ π)) β π β β€) |
24 | | 2cshw 14759 |
. . . . . . . . . . . . . . . 16
β’ ((π§ β Word π β§ π β β€ β§ π β β€) β ((π§ cyclShift π) cyclShift π) = (π§ cyclShift (π + π))) |
25 | 18, 20, 23, 24 | syl3anc 1371 |
. . . . . . . . . . . . . . 15
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ ((π + π) β€ (β―βπ§) β§ π)) β ((π§ cyclShift π) cyclShift π) = (π§ cyclShift (π + π))) |
26 | 25 | eqeq2d 2743 |
. . . . . . . . . . . . . 14
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ ((π + π) β€ (β―βπ§) β§ π)) β (π₯ = ((π§ cyclShift π) cyclShift π) β π₯ = (π§ cyclShift (π + π)))) |
27 | 26 | biimpa 477 |
. . . . . . . . . . . . 13
β’ ((((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ ((π + π) β€ (β―βπ§) β§ π)) β§ π₯ = ((π§ cyclShift π) cyclShift π)) β π₯ = (π§ cyclShift (π + π))) |
28 | 15, 27 | jca 512 |
. . . . . . . . . . . 12
β’ ((((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ ((π + π) β€ (β―βπ§) β§ π)) β§ π₯ = ((π§ cyclShift π) cyclShift π)) β ((π + π) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift (π + π)))) |
29 | 28 | exp41 435 |
. . . . . . . . . . 11
β’ (π β
(0...(β―βπ¦))
β (π β
(0...(β―βπ§))
β (((π + π) β€ (β―βπ§) β§ π) β (π₯ = ((π§ cyclShift π) cyclShift π) β ((π + π) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift (π + π))))))) |
30 | 29 | com23 86 |
. . . . . . . . . 10
β’ (π β
(0...(β―βπ¦))
β (((π + π) β€ (β―βπ§) β§ π) β (π β (0...(β―βπ§)) β (π₯ = ((π§ cyclShift π) cyclShift π) β ((π + π) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift (π + π))))))) |
31 | 30 | com24 95 |
. . . . . . . . 9
β’ (π β
(0...(β―βπ¦))
β (π₯ = ((π§ cyclShift π) cyclShift π) β (π β (0...(β―βπ§)) β (((π + π) β€ (β―βπ§) β§ π) β ((π + π) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift (π + π))))))) |
32 | 31 | imp 407 |
. . . . . . . 8
β’ ((π β
(0...(β―βπ¦))
β§ π₯ = ((π§ cyclShift π) cyclShift π)) β (π β (0...(β―βπ§)) β (((π + π) β€ (β―βπ§) β§ π) β ((π + π) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift (π + π)))))) |
33 | 32 | com12 32 |
. . . . . . 7
β’ (π β
(0...(β―βπ§))
β ((π β
(0...(β―βπ¦))
β§ π₯ = ((π§ cyclShift π) cyclShift π)) β (((π + π) β€ (β―βπ§) β§ π) β ((π + π) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift (π + π)))))) |
34 | 33 | adantl 482 |
. . . . . 6
β’ ((π¦ = (π§ cyclShift π) β§ π β (0...(β―βπ§))) β ((π β (0...(β―βπ¦)) β§ π₯ = ((π§ cyclShift π) cyclShift π)) β (((π + π) β€ (β―βπ§) β§ π) β ((π + π) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift (π + π)))))) |
35 | 4, 34 | sylbid 239 |
. . . . 5
β’ ((π¦ = (π§ cyclShift π) β§ π β (0...(β―βπ§))) β ((π β (0...(β―βπ¦)) β§ π₯ = (π¦ cyclShift π)) β (((π + π) β€ (β―βπ§) β§ π) β ((π + π) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift (π + π)))))) |
36 | 35 | ancoms 459 |
. . . 4
β’ ((π β
(0...(β―βπ§))
β§ π¦ = (π§ cyclShift π)) β ((π β (0...(β―βπ¦)) β§ π₯ = (π¦ cyclShift π)) β (((π + π) β€ (β―βπ§) β§ π) β ((π + π) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift (π + π)))))) |
37 | 36 | impcom 408 |
. . 3
β’ (((π β
(0...(β―βπ¦))
β§ π₯ = (π¦ cyclShift π)) β§ (π β (0...(β―βπ§)) β§ π¦ = (π§ cyclShift π))) β (((π + π) β€ (β―βπ§) β§ π) β ((π + π) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift (π + π))))) |
38 | | oveq2 7413 |
. . . 4
β’ (π = (π + π) β (π§ cyclShift π) = (π§ cyclShift (π + π))) |
39 | 38 | rspceeqv 3632 |
. . 3
β’ (((π + π) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift (π + π))) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π)) |
40 | 37, 39 | syl6com 37 |
. 2
β’ (((π + π) β€ (β―βπ§) β§ π) β (((π β (0...(β―βπ¦)) β§ π₯ = (π¦ cyclShift π)) β§ (π β (0...(β―βπ§)) β§ π¦ = (π§ cyclShift π))) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π))) |
41 | | elfz2 13487 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β
(0...(β―βπ§))
β ((0 β β€ β§ (β―βπ§) β β€ β§ π β β€) β§ (0 β€ π β§ π β€ (β―βπ§)))) |
42 | | nn0z 12579 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β β0
β π β
β€) |
43 | | zaddcl 12598 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((π β β€ β§ π β β€) β (π + π) β β€) |
44 | 43 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π β β€ β (π β β€ β (π + π) β β€)) |
45 | 44 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’
(((β―βπ§)
β β€ β§ π
β β€) β (π
β β€ β (π +
π) β
β€)) |
46 | 45 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π β β€ β§
((β―βπ§) β
β€ β§ π β
β€)) β (π + π) β
β€) |
47 | | simprl 769 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π β β€ β§
((β―βπ§) β
β€ β§ π β
β€)) β (β―βπ§) β β€) |
48 | 46, 47 | zsubcld 12667 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π β β€ β§
((β―βπ§) β
β€ β§ π β
β€)) β ((π +
π) β
(β―βπ§)) β
β€) |
49 | 48 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β β€ β
(((β―βπ§) β
β€ β§ π β
β€) β ((π + π) β (β―βπ§)) β
β€)) |
50 | 42, 49 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β β0
β (((β―βπ§)
β β€ β§ π
β β€) β ((π
+ π) β
(β―βπ§)) β
β€)) |
51 | 50 | com12 32 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(((β―βπ§)
β β€ β§ π
β β€) β (π
β β0 β ((π + π) β (β―βπ§)) β β€)) |
52 | 51 | 3adant1 1130 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((0
β β€ β§ (β―βπ§) β β€ β§ π β β€) β (π β β0 β ((π + π) β (β―βπ§)) β β€)) |
53 | 52 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ (((0
β β€ β§ (β―βπ§) β β€ β§ π β β€) β§ (0 β€ π β§ π β€ (β―βπ§))) β (π β β0 β ((π + π) β (β―βπ§)) β β€)) |
54 | 41, 53 | sylbi 216 |
. . . . . . . . . . . . . . . . . 18
β’ (π β
(0...(β―βπ§))
β (π β
β0 β ((π + π) β (β―βπ§)) β β€)) |
55 | 6, 54 | mpan9 507 |
. . . . . . . . . . . . . . . . 17
β’ ((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β ((π + π) β (β―βπ§)) β
β€) |
56 | 55 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β ((π + π) β (β―βπ§)) β β€) |
57 | | elfz2nn0 13588 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β
(0...(β―βπ§))
β (π β
β0 β§ (β―βπ§) β β0 β§ π β€ (β―βπ§))) |
58 | | nn0re 12477 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π β β0
β π β
β) |
59 | | nn0re 12477 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’
((β―βπ§)
β β0 β (β―βπ§) β β) |
60 | 58, 59 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π β β0
β§ (β―βπ§)
β β0) β (π β β β§ (β―βπ§) β
β)) |
61 | | nn0re 12477 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π β β0
β π β
β) |
62 | 60, 61 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π β β0
β§ (β―βπ§)
β β0) β§ π β β0) β ((π β β β§
(β―βπ§) β
β) β§ π β
β)) |
63 | | simplr 767 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π β β β§
(β―βπ§) β
β) β§ π β
β) β (β―βπ§) β β) |
64 | | readdcl 11189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π β β β§ π β β) β (π + π) β β) |
65 | 64 | adantlr 713 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π β β β§
(β―βπ§) β
β) β§ π β
β) β (π + π) β
β) |
66 | 63, 65 | ltnled 11357 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β β β§
(β―βπ§) β
β) β§ π β
β) β ((β―βπ§) < (π + π) β Β¬ (π + π) β€ (β―βπ§))) |
67 | 63, 65 | posdifd 11797 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π β β β§
(β―βπ§) β
β) β§ π β
β) β ((β―βπ§) < (π + π) β 0 < ((π + π) β (β―βπ§)))) |
68 | 67 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β β β§
(β―βπ§) β
β) β§ π β
β) β ((β―βπ§) < (π + π) β 0 < ((π + π) β (β―βπ§)))) |
69 | 66, 68 | sylbird 259 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π β β β§
(β―βπ§) β
β) β§ π β
β) β (Β¬ (π +
π) β€
(β―βπ§) β 0
< ((π + π) β (β―βπ§)))) |
70 | 62, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β β0
β§ (β―βπ§)
β β0) β§ π β β0) β (Β¬
(π + π) β€ (β―βπ§) β 0 < ((π + π) β (β―βπ§)))) |
71 | 70 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β β0
β§ (β―βπ§)
β β0) β (π β β0 β (Β¬
(π + π) β€ (β―βπ§) β 0 < ((π + π) β (β―βπ§))))) |
72 | 71 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β β0
β§ (β―βπ§)
β β0 β§ π β€ (β―βπ§)) β (π β β0 β (Β¬
(π + π) β€ (β―βπ§) β 0 < ((π + π) β (β―βπ§))))) |
73 | 57, 72 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β
(0...(β―βπ§))
β (π β
β0 β (Β¬ (π + π) β€ (β―βπ§) β 0 < ((π + π) β (β―βπ§))))) |
74 | 6, 73 | mpan9 507 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β (Β¬ (π + π) β€ (β―βπ§) β 0 < ((π + π) β (β―βπ§)))) |
75 | 74 | com12 32 |
. . . . . . . . . . . . . . . . . 18
β’ (Β¬
(π + π) β€ (β―βπ§) β ((π β (0...(β―βπ¦)) β§ π β (0...(β―βπ§))) β 0 < ((π + π) β (β―βπ§)))) |
76 | 75 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ ((Β¬
(π + π) β€ (β―βπ§) β§ π) β ((π β (0...(β―βπ¦)) β§ π β (0...(β―βπ§))) β 0 < ((π + π) β (β―βπ§)))) |
77 | 76 | impcom 408 |
. . . . . . . . . . . . . . . 16
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β 0 < ((π + π) β (β―βπ§))) |
78 | | elnnz 12564 |
. . . . . . . . . . . . . . . 16
β’ (((π + π) β (β―βπ§)) β β β (((π + π) β (β―βπ§)) β β€ β§ 0 < ((π + π) β (β―βπ§)))) |
79 | 56, 77, 78 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β ((π + π) β (β―βπ§)) β β) |
80 | 79 | nnnn0d 12528 |
. . . . . . . . . . . . . 14
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β ((π + π) β (β―βπ§)) β
β0) |
81 | 10 | ad2antlr 725 |
. . . . . . . . . . . . . 14
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β (β―βπ§) β
β0) |
82 | | cshwcsh2id.2 |
. . . . . . . . . . . . . . . . 17
β’ (π β ((β―βπ¦) = (β―βπ§) β§ (β―βπ₯) = (β―βπ¦))) |
83 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((β―βπ¦) =
(β―βπ§) β
(0...(β―βπ¦)) =
(0...(β―βπ§))) |
84 | 83 | eleq2d 2819 |
. . . . . . . . . . . . . . . . . . . 20
β’
((β―βπ¦) =
(β―βπ§) β
(π β
(0...(β―βπ¦))
β π β
(0...(β―βπ§)))) |
85 | 84 | anbi1d 630 |
. . . . . . . . . . . . . . . . . . 19
β’
((β―βπ¦) =
(β―βπ§) β
((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β (π β
(0...(β―βπ§))
β§ π β
(0...(β―βπ§))))) |
86 | | elfz2nn0 13588 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β
(0...(β―βπ§))
β (π β
β0 β§ (β―βπ§) β β0 β§ π β€ (β―βπ§))) |
87 | 58 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((π β β0
β§ (β―βπ§)
β β0) β π β β) |
88 | 87, 61 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π β β0
β§ (β―βπ§)
β β0) β§ π β β0) β (π β β β§ π β
β)) |
89 | 59, 59 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’
((β―βπ§)
β β0 β ((β―βπ§) β β β§ (β―βπ§) β
β)) |
90 | 89 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π β β0
β§ (β―βπ§)
β β0) β§ π β β0) β
((β―βπ§) β
β β§ (β―βπ§) β β)) |
91 | | le2add 11692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π β β β§ π β β) β§
((β―βπ§) β
β β§ (β―βπ§) β β)) β ((π β€ (β―βπ§) β§ π β€ (β―βπ§)) β (π + π) β€ ((β―βπ§) + (β―βπ§)))) |
92 | 88, 90, 91 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π β β0
β§ (β―βπ§)
β β0) β§ π β β0) β ((π β€ (β―βπ§) β§ π β€ (β―βπ§)) β (π + π) β€ ((β―βπ§) + (β―βπ§)))) |
93 | | nn0readdcl 12534 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((π β β0
β§ π β
β0) β (π + π) β β) |
94 | 93 | adantlr 713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π β β0
β§ (β―βπ§)
β β0) β§ π β β0) β (π + π) β β) |
95 | 59 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π β β0
β§ (β―βπ§)
β β0) β§ π β β0) β
(β―βπ§) β
β) |
96 | 94, 95, 95 | lesubadd2d 11809 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π β β0
β§ (β―βπ§)
β β0) β§ π β β0) β (((π + π) β (β―βπ§)) β€ (β―βπ§) β (π + π) β€ ((β―βπ§) + (β―βπ§)))) |
97 | 92, 96 | sylibrd 258 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π β β0
β§ (β―βπ§)
β β0) β§ π β β0) β ((π β€ (β―βπ§) β§ π β€ (β―βπ§)) β ((π + π) β (β―βπ§)) β€ (β―βπ§))) |
98 | 97 | expcomd 417 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β β0
β§ (β―βπ§)
β β0) β§ π β β0) β (π β€ (β―βπ§) β (π β€ (β―βπ§) β ((π + π) β (β―βπ§)) β€ (β―βπ§)))) |
99 | 98 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π β β0
β§ (β―βπ§)
β β0) β (π β β0 β (π β€ (β―βπ§) β (π β€ (β―βπ§) β ((π + π) β (β―βπ§)) β€ (β―βπ§))))) |
100 | 99 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π β β0
β§ (β―βπ§)
β β0) β (π β€ (β―βπ§) β (π β€ (β―βπ§) β (π β β0 β ((π + π) β (β―βπ§)) β€ (β―βπ§))))) |
101 | 100 | 3impia 1117 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π β β0
β§ (β―βπ§)
β β0 β§ π β€ (β―βπ§)) β (π β€ (β―βπ§) β (π β β0 β ((π + π) β (β―βπ§)) β€ (β―βπ§)))) |
102 | 101 | com13 88 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π β β0
β (π β€
(β―βπ§) β
((π β
β0 β§ (β―βπ§) β β0 β§ π β€ (β―βπ§)) β ((π + π) β (β―βπ§)) β€ (β―βπ§)))) |
103 | 102 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β β0
β§ π β€
(β―βπ§)) β
((π β
β0 β§ (β―βπ§) β β0 β§ π β€ (β―βπ§)) β ((π + π) β (β―βπ§)) β€ (β―βπ§))) |
104 | 57, 103 | biimtrid 241 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β β0
β§ π β€
(β―βπ§)) β
(π β
(0...(β―βπ§))
β ((π + π) β (β―βπ§)) β€ (β―βπ§))) |
105 | 104 | 3adant2 1131 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β β0
β§ (β―βπ§)
β β0 β§ π β€ (β―βπ§)) β (π β (0...(β―βπ§)) β ((π + π) β (β―βπ§)) β€ (β―βπ§))) |
106 | 86, 105 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β
(0...(β―βπ§))
β (π β
(0...(β―βπ§))
β ((π + π) β (β―βπ§)) β€ (β―βπ§))) |
107 | 106 | imp 407 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β
(0...(β―βπ§))
β§ π β
(0...(β―βπ§)))
β ((π + π) β (β―βπ§)) β€ (β―βπ§)) |
108 | 85, 107 | syl6bi 252 |
. . . . . . . . . . . . . . . . . 18
β’
((β―βπ¦) =
(β―βπ§) β
((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β ((π + π) β (β―βπ§)) β€ (β―βπ§))) |
109 | 108 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’
(((β―βπ¦)
= (β―βπ§) β§
(β―βπ₯) =
(β―βπ¦)) β
((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β ((π + π) β (β―βπ§)) β€ (β―βπ§))) |
110 | 82, 109 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β ((π β (0...(β―βπ¦)) β§ π β (0...(β―βπ§))) β ((π + π) β (β―βπ§)) β€ (β―βπ§))) |
111 | 110 | adantl 482 |
. . . . . . . . . . . . . . 15
β’ ((Β¬
(π + π) β€ (β―βπ§) β§ π) β ((π β (0...(β―βπ¦)) β§ π β (0...(β―βπ§))) β ((π + π) β (β―βπ§)) β€ (β―βπ§))) |
112 | 111 | impcom 408 |
. . . . . . . . . . . . . 14
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β ((π + π) β (β―βπ§)) β€ (β―βπ§)) |
113 | | elfz2nn0 13588 |
. . . . . . . . . . . . . 14
β’ (((π + π) β (β―βπ§)) β (0...(β―βπ§)) β (((π + π) β (β―βπ§)) β β0 β§
(β―βπ§) β
β0 β§ ((π + π) β (β―βπ§)) β€ (β―βπ§))) |
114 | 80, 81, 112, 113 | syl3anbrc 1343 |
. . . . . . . . . . . . 13
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β ((π + π) β (β―βπ§)) β (0...(β―βπ§))) |
115 | 114 | adantr 481 |
. . . . . . . . . . . 12
β’ ((((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β§ π₯ = ((π§ cyclShift π) cyclShift π)) β ((π + π) β (β―βπ§)) β (0...(β―βπ§))) |
116 | 16 | adantl 482 |
. . . . . . . . . . . . . . . . 17
β’ ((Β¬
(π + π) β€ (β―βπ§) β§ π) β π§ β Word π) |
117 | 116 | adantl 482 |
. . . . . . . . . . . . . . . 16
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β π§ β Word π) |
118 | 19 | ad2antlr 725 |
. . . . . . . . . . . . . . . 16
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β π β β€) |
119 | 22 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β π β β€) |
120 | 117, 118,
119, 24 | syl3anc 1371 |
. . . . . . . . . . . . . . 15
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β ((π§ cyclShift π) cyclShift π) = (π§ cyclShift (π + π))) |
121 | 19, 21, 43 | syl2anr 597 |
. . . . . . . . . . . . . . . 16
β’ ((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β (π + π) β
β€) |
122 | | cshwsublen 14742 |
. . . . . . . . . . . . . . . 16
β’ ((π§ β Word π β§ (π + π) β β€) β (π§ cyclShift (π + π)) = (π§ cyclShift ((π + π) β (β―βπ§)))) |
123 | 116, 121,
122 | syl2anr 597 |
. . . . . . . . . . . . . . 15
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β (π§ cyclShift (π + π)) = (π§ cyclShift ((π + π) β (β―βπ§)))) |
124 | 120, 123 | eqtrd 2772 |
. . . . . . . . . . . . . 14
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β ((π§ cyclShift π) cyclShift π) = (π§ cyclShift ((π + π) β (β―βπ§)))) |
125 | 124 | eqeq2d 2743 |
. . . . . . . . . . . . 13
β’ (((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β (π₯ = ((π§ cyclShift π) cyclShift π) β π₯ = (π§ cyclShift ((π + π) β (β―βπ§))))) |
126 | 125 | biimpa 477 |
. . . . . . . . . . . 12
β’ ((((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β§ π₯ = ((π§ cyclShift π) cyclShift π)) β π₯ = (π§ cyclShift ((π + π) β (β―βπ§)))) |
127 | 115, 126 | jca 512 |
. . . . . . . . . . 11
β’ ((((π β
(0...(β―βπ¦))
β§ π β
(0...(β―βπ§)))
β§ (Β¬ (π + π) β€ (β―βπ§) β§ π)) β§ π₯ = ((π§ cyclShift π) cyclShift π)) β (((π + π) β (β―βπ§)) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift ((π + π) β (β―βπ§))))) |
128 | 127 | exp41 435 |
. . . . . . . . . 10
β’ (π β
(0...(β―βπ¦))
β (π β
(0...(β―βπ§))
β ((Β¬ (π + π) β€ (β―βπ§) β§ π) β (π₯ = ((π§ cyclShift π) cyclShift π) β (((π + π) β (β―βπ§)) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift ((π + π) β (β―βπ§)))))))) |
129 | 128 | com23 86 |
. . . . . . . . 9
β’ (π β
(0...(β―βπ¦))
β ((Β¬ (π + π) β€ (β―βπ§) β§ π) β (π β (0...(β―βπ§)) β (π₯ = ((π§ cyclShift π) cyclShift π) β (((π + π) β (β―βπ§)) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift ((π + π) β (β―βπ§)))))))) |
130 | 129 | com24 95 |
. . . . . . . 8
β’ (π β
(0...(β―βπ¦))
β (π₯ = ((π§ cyclShift π) cyclShift π) β (π β (0...(β―βπ§)) β ((Β¬ (π + π) β€ (β―βπ§) β§ π) β (((π + π) β (β―βπ§)) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift ((π + π) β (β―βπ§)))))))) |
131 | 130 | imp 407 |
. . . . . . 7
β’ ((π β
(0...(β―βπ¦))
β§ π₯ = ((π§ cyclShift π) cyclShift π)) β (π β (0...(β―βπ§)) β ((Β¬ (π + π) β€ (β―βπ§) β§ π) β (((π + π) β (β―βπ§)) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift ((π + π) β (β―βπ§))))))) |
132 | 3, 131 | syl6bi 252 |
. . . . . 6
β’ (π¦ = (π§ cyclShift π) β ((π β (0...(β―βπ¦)) β§ π₯ = (π¦ cyclShift π)) β (π β (0...(β―βπ§)) β ((Β¬ (π + π) β€ (β―βπ§) β§ π) β (((π + π) β (β―βπ§)) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift ((π + π) β (β―βπ§)))))))) |
133 | 132 | com23 86 |
. . . . 5
β’ (π¦ = (π§ cyclShift π) β (π β (0...(β―βπ§)) β ((π β (0...(β―βπ¦)) β§ π₯ = (π¦ cyclShift π)) β ((Β¬ (π + π) β€ (β―βπ§) β§ π) β (((π + π) β (β―βπ§)) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift ((π + π) β (β―βπ§)))))))) |
134 | 133 | impcom 408 |
. . . 4
β’ ((π β
(0...(β―βπ§))
β§ π¦ = (π§ cyclShift π)) β ((π β (0...(β―βπ¦)) β§ π₯ = (π¦ cyclShift π)) β ((Β¬ (π + π) β€ (β―βπ§) β§ π) β (((π + π) β (β―βπ§)) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift ((π + π) β (β―βπ§))))))) |
135 | 134 | impcom 408 |
. . 3
β’ (((π β
(0...(β―βπ¦))
β§ π₯ = (π¦ cyclShift π)) β§ (π β (0...(β―βπ§)) β§ π¦ = (π§ cyclShift π))) β ((Β¬ (π + π) β€ (β―βπ§) β§ π) β (((π + π) β (β―βπ§)) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift ((π + π) β (β―βπ§)))))) |
136 | | oveq2 7413 |
. . . 4
β’ (π = ((π + π) β (β―βπ§)) β (π§ cyclShift π) = (π§ cyclShift ((π + π) β (β―βπ§)))) |
137 | 136 | rspceeqv 3632 |
. . 3
β’ ((((π + π) β (β―βπ§)) β (0...(β―βπ§)) β§ π₯ = (π§ cyclShift ((π + π) β (β―βπ§)))) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π)) |
138 | 135, 137 | syl6com 37 |
. 2
β’ ((Β¬
(π + π) β€ (β―βπ§) β§ π) β (((π β (0...(β―βπ¦)) β§ π₯ = (π¦ cyclShift π)) β§ (π β (0...(β―βπ§)) β§ π¦ = (π§ cyclShift π))) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π))) |
139 | 40, 138 | pm2.61ian 810 |
1
β’ (π β (((π β (0...(β―βπ¦)) β§ π₯ = (π¦ cyclShift π)) β§ (π β (0...(β―βπ§)) β§ π¦ = (π§ cyclShift π))) β βπ β (0...(β―βπ§))π₯ = (π§ cyclShift π))) |