MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwcsh2id Structured version   Visualization version   GIF version

Theorem cshwcsh2id 14181
Description: A cyclically shifted word can be reconstructed by cyclically shifting it again twice. Lemma for erclwwlktr 27807 and erclwwlkntr 27856. (Contributed by AV, 9-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.)
Hypotheses
Ref Expression
cshwcsh2id.1 (𝜑𝑧 ∈ Word 𝑉)
cshwcsh2id.2 (𝜑 → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))
Assertion
Ref Expression
cshwcsh2id (𝜑 → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
Distinct variable group:   𝑘,𝑚,𝑛,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑘,𝑚,𝑛)   𝑉(𝑥,𝑦,𝑧,𝑘,𝑚,𝑛)

Proof of Theorem cshwcsh2id
StepHypRef Expression
1 oveq1 7142 . . . . . . . . 9 (𝑦 = (𝑧 cyclShift 𝑘) → (𝑦 cyclShift 𝑚) = ((𝑧 cyclShift 𝑘) cyclShift 𝑚))
21eqeq2d 2809 . . . . . . . 8 (𝑦 = (𝑧 cyclShift 𝑘) → (𝑥 = (𝑦 cyclShift 𝑚) ↔ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)))
32anbi2d 631 . . . . . . 7 (𝑦 = (𝑧 cyclShift 𝑘) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚))))
43adantr 484 . . . . . 6 ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚))))
5 elfznn0 12995 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(♯‘𝑧)) → 𝑘 ∈ ℕ0)
6 elfznn0 12995 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (0...(♯‘𝑦)) → 𝑚 ∈ ℕ0)
7 nn0addcl 11920 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑘 + 𝑚) ∈ ℕ0)
85, 6, 7syl2anr 599 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → (𝑘 + 𝑚) ∈ ℕ0)
98adantr 484 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ∈ ℕ0)
10 elfz3nn0 12996 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...(♯‘𝑧)) → (♯‘𝑧) ∈ ℕ0)
1110ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (♯‘𝑧) ∈ ℕ0)
12 simprl 770 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ≤ (♯‘𝑧))
13 elfz2nn0 12993 . . . . . . . . . . . . . . 15 ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ↔ ((𝑘 + 𝑚) ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0 ∧ (𝑘 + 𝑚) ≤ (♯‘𝑧)))
149, 11, 12, 13syl3anbrc 1340 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ∈ (0...(♯‘𝑧)))
1514adantr 484 . . . . . . . . . . . . 13 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 + 𝑚) ∈ (0...(♯‘𝑧)))
16 cshwcsh2id.1 . . . . . . . . . . . . . . . . . 18 (𝜑𝑧 ∈ Word 𝑉)
1716adantl 485 . . . . . . . . . . . . . . . . 17 (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → 𝑧 ∈ Word 𝑉)
1817adantl 485 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑧 ∈ Word 𝑉)
19 elfzelz 12902 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(♯‘𝑧)) → 𝑘 ∈ ℤ)
2019ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑘 ∈ ℤ)
21 elfzelz 12902 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (0...(♯‘𝑦)) → 𝑚 ∈ ℤ)
2221adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → 𝑚 ∈ ℤ)
2322adantr 484 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑚 ∈ ℤ)
24 2cshw 14166 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ Word 𝑉𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚)))
2518, 20, 23, 24syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚)))
2625eqeq2d 2809 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) ↔ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))
2726biimpa 480 . . . . . . . . . . . . 13 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))
2815, 27jca 515 . . . . . . . . . . . 12 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))
2928exp41 438 . . . . . . . . . . 11 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑘 ∈ (0...(♯‘𝑧)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))))
3029com23 86 . . . . . . . . . 10 (𝑚 ∈ (0...(♯‘𝑦)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑘 ∈ (0...(♯‘𝑧)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))))
3130com24 95 . . . . . . . . 9 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (𝑘 ∈ (0...(♯‘𝑧)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))))
3231imp 410 . . . . . . . 8 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 ∈ (0...(♯‘𝑧)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3332com12 32 . . . . . . 7 (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3433adantl 485 . . . . . 6 ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
354, 34sylbid 243 . . . . 5 ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3635ancoms 462 . . . 4 ((𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3736impcom 411 . . 3 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))
38 oveq2 7143 . . . 4 (𝑛 = (𝑘 + 𝑚) → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift (𝑘 + 𝑚)))
3938rspceeqv 3586 . . 3 (((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))
4037, 39syl6com 37 . 2 (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
41 elfz2 12892 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...(♯‘𝑧)) ↔ ((0 ∈ ℤ ∧ (♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑘𝑘 ≤ (♯‘𝑧))))
42 nn0z 11993 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
43 zaddcl 12010 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 + 𝑚) ∈ ℤ)
4443ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ℤ → (𝑚 ∈ ℤ → (𝑘 + 𝑚) ∈ ℤ))
4544adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚 ∈ ℤ → (𝑘 + 𝑚) ∈ ℤ))
4645impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ℤ ∧ ((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 + 𝑚) ∈ ℤ)
47 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ℤ ∧ ((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (♯‘𝑧) ∈ ℤ)
4846, 47zsubcld 12080 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℤ ∧ ((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ)
4948ex 416 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℤ → (((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
5042, 49syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℕ0 → (((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
5150com12 32 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
52513adant1 1127 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℤ ∧ (♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
5352adantr 484 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℤ ∧ (♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑘𝑘 ≤ (♯‘𝑧))) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
5441, 53sylbi 220 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...(♯‘𝑧)) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
556, 54mpan9 510 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ)
5655adantr 484 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ)
57 elfz2nn0 12993 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (0...(♯‘𝑧)) ↔ (𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)))
58 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
59 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑧) ∈ ℕ0 → (♯‘𝑧) ∈ ℝ)
6058, 59anim12i 615 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → (𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ))
61 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
6260, 61anim12i 615 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ))
63 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (♯‘𝑧) ∈ ℝ)
64 readdcl 10609 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑘 + 𝑚) ∈ ℝ)
6564adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑘 + 𝑚) ∈ ℝ)
6663, 65ltnled 10776 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((♯‘𝑧) < (𝑘 + 𝑚) ↔ ¬ (𝑘 + 𝑚) ≤ (♯‘𝑧)))
6763, 65posdifd 11216 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((♯‘𝑧) < (𝑘 + 𝑚) ↔ 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
6867biimpd 232 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((♯‘𝑧) < (𝑘 + 𝑚) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
6966, 68sylbird 263 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7062, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7170ex 416 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → (𝑚 ∈ ℕ0 → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))))
72713adant3 1129 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)) → (𝑚 ∈ ℕ0 → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))))
7357, 72sylbi 220 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...(♯‘𝑧)) → (𝑚 ∈ ℕ0 → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))))
746, 73mpan9 510 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7574com12 32 . . . . . . . . . . . . . . . . . 18 (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7675adantr 484 . . . . . . . . . . . . . . . . 17 ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7776impcom 411 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))
78 elnnz 11979 . . . . . . . . . . . . . . . 16 (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ ↔ (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ ∧ 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7956, 77, 78sylanbrc 586 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ)
8079nnnn0d 11943 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ0)
8110ad2antlr 726 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (♯‘𝑧) ∈ ℕ0)
82 cshwcsh2id.2 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))
83 oveq2 7143 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑦) = (♯‘𝑧) → (0...(♯‘𝑦)) = (0...(♯‘𝑧)))
8483eleq2d 2875 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑦) = (♯‘𝑧) → (𝑚 ∈ (0...(♯‘𝑦)) ↔ 𝑚 ∈ (0...(♯‘𝑧))))
8584anbi1d 632 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑦) = (♯‘𝑧) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ↔ (𝑚 ∈ (0...(♯‘𝑧)) ∧ 𝑘 ∈ (0...(♯‘𝑧)))))
86 elfz2nn0 12993 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (0...(♯‘𝑧)) ↔ (𝑚 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑚 ≤ (♯‘𝑧)))
8758adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → 𝑘 ∈ ℝ)
8887, 61anim12i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ))
8959, 59jca 515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((♯‘𝑧) ∈ ℕ0 → ((♯‘𝑧) ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ))
9089ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((♯‘𝑧) ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ))
91 le2add 11111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) ∧ ((♯‘𝑧) ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ)) → ((𝑘 ≤ (♯‘𝑧) ∧ 𝑚 ≤ (♯‘𝑧)) → (𝑘 + 𝑚) ≤ ((♯‘𝑧) + (♯‘𝑧))))
9288, 90, 91syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ≤ (♯‘𝑧) ∧ 𝑚 ≤ (♯‘𝑧)) → (𝑘 + 𝑚) ≤ ((♯‘𝑧) + (♯‘𝑧))))
93 nn0readdcl 11949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑘 + 𝑚) ∈ ℝ)
9493adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑘 + 𝑚) ∈ ℝ)
9559ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (♯‘𝑧) ∈ ℝ)
9694, 95, 95lesubadd2d 11228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧) ↔ (𝑘 + 𝑚) ≤ ((♯‘𝑧) + (♯‘𝑧))))
9792, 96sylibrd 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ≤ (♯‘𝑧) ∧ 𝑚 ≤ (♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
9897expcomd 420 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑚 ≤ (♯‘𝑧) → (𝑘 ≤ (♯‘𝑧) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))))
9998ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → (𝑚 ∈ ℕ0 → (𝑚 ≤ (♯‘𝑧) → (𝑘 ≤ (♯‘𝑧) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))))
10099com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → (𝑘 ≤ (♯‘𝑧) → (𝑚 ≤ (♯‘𝑧) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))))
1011003impia 1114 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)) → (𝑚 ≤ (♯‘𝑧) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))))
102101com13 88 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℕ0 → (𝑚 ≤ (♯‘𝑧) → ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))))
103102imp 410 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℕ0𝑚 ≤ (♯‘𝑧)) → ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
10457, 103syl5bi 245 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℕ0𝑚 ≤ (♯‘𝑧)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
1051043adant2 1128 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑚 ≤ (♯‘𝑧)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
10686, 105sylbi 220 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (0...(♯‘𝑧)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
107106imp 410 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ (0...(♯‘𝑧)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))
10885, 107syl6bi 256 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑦) = (♯‘𝑧) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
109108adantr 484 . . . . . . . . . . . . . . . . 17 (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
11082, 109syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
111110adantl 485 . . . . . . . . . . . . . . 15 ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
112111impcom 411 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))
113 elfz2nn0 12993 . . . . . . . . . . . . . 14 (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ↔ (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0 ∧ ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
11480, 81, 112, 113syl3anbrc 1340 . . . . . . . . . . . . 13 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)))
115114adantr 484 . . . . . . . . . . . 12 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)))
11616adantl 485 . . . . . . . . . . . . . . . . 17 ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → 𝑧 ∈ Word 𝑉)
117116adantl 485 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑧 ∈ Word 𝑉)
11819ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑘 ∈ ℤ)
11922adantr 484 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑚 ∈ ℤ)
120117, 118, 119, 24syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚)))
12119, 21, 43syl2anr 599 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → (𝑘 + 𝑚) ∈ ℤ)
122 cshwsublen 14149 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ Word 𝑉 ∧ (𝑘 + 𝑚) ∈ ℤ) → (𝑧 cyclShift (𝑘 + 𝑚)) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
123116, 121, 122syl2anr 599 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑧 cyclShift (𝑘 + 𝑚)) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
124120, 123eqtrd 2833 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
125124eqeq2d 2809 . . . . . . . . . . . . 13 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) ↔ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))
126125biimpa 480 . . . . . . . . . . . 12 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
127115, 126jca 515 . . . . . . . . . . 11 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))
128127exp41 438 . . . . . . . . . 10 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
129128com23 86 . . . . . . . . 9 (𝑚 ∈ (0...(♯‘𝑦)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑘 ∈ (0...(♯‘𝑧)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
130129com24 95 . . . . . . . 8 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
131130imp 410 . . . . . . 7 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))))
1323, 131syl6bi 256 . . . . . 6 (𝑦 = (𝑧 cyclShift 𝑘) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
133132com23 86 . . . . 5 (𝑦 = (𝑧 cyclShift 𝑘) → (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
134133impcom 411 . . . 4 ((𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))))
135134impcom 411 . . 3 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))
136 oveq2 7143 . . . 4 (𝑛 = ((𝑘 + 𝑚) − (♯‘𝑧)) → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
137136rspceeqv 3586 . . 3 ((((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))
138135, 137syl6com 37 . 2 ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
13940, 138pm2.61ian 811 1 (𝜑 → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526   + caddc 10529   < clt 10664  cle 10665  cmin 10859  cn 11625  0cn0 11885  cz 11969  ...cfz 12885  chash 13686  Word cword 13857   cyclShift ccsh 14141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-hash 13687  df-word 13858  df-concat 13914  df-substr 13994  df-pfx 14024  df-csh 14142
This theorem is referenced by:  erclwwlktr  27807  erclwwlkntr  27856
  Copyright terms: Public domain W3C validator