MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwcsh2id Structured version   Visualization version   GIF version

Theorem cshwcsh2id 13956
Description: A cyclically shifted word can be reconstructed by cyclically shifting it again twice. Lemma for erclwwlktr 27367 and erclwwlkntr 27424. (Contributed by AV, 9-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.)
Hypotheses
Ref Expression
cshwcsh2id.1 (𝜑𝑧 ∈ Word 𝑉)
cshwcsh2id.2 (𝜑 → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))
Assertion
Ref Expression
cshwcsh2id (𝜑 → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
Distinct variable group:   𝑘,𝑚,𝑛,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑘,𝑚,𝑛)   𝑉(𝑥,𝑦,𝑧,𝑘,𝑚,𝑛)

Proof of Theorem cshwcsh2id
StepHypRef Expression
1 oveq1 6917 . . . . . . . . 9 (𝑦 = (𝑧 cyclShift 𝑘) → (𝑦 cyclShift 𝑚) = ((𝑧 cyclShift 𝑘) cyclShift 𝑚))
21eqeq2d 2835 . . . . . . . 8 (𝑦 = (𝑧 cyclShift 𝑘) → (𝑥 = (𝑦 cyclShift 𝑚) ↔ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)))
32anbi2d 622 . . . . . . 7 (𝑦 = (𝑧 cyclShift 𝑘) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚))))
43adantr 474 . . . . . 6 ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚))))
5 elfznn0 12734 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(♯‘𝑧)) → 𝑘 ∈ ℕ0)
6 elfznn0 12734 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (0...(♯‘𝑦)) → 𝑚 ∈ ℕ0)
7 nn0addcl 11662 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑘 + 𝑚) ∈ ℕ0)
85, 6, 7syl2anr 590 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → (𝑘 + 𝑚) ∈ ℕ0)
98adantr 474 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ∈ ℕ0)
10 elfz3nn0 12735 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...(♯‘𝑧)) → (♯‘𝑧) ∈ ℕ0)
1110ad2antlr 718 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (♯‘𝑧) ∈ ℕ0)
12 simprl 787 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ≤ (♯‘𝑧))
13 elfz2nn0 12732 . . . . . . . . . . . . . . 15 ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ↔ ((𝑘 + 𝑚) ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0 ∧ (𝑘 + 𝑚) ≤ (♯‘𝑧)))
149, 11, 12, 13syl3anbrc 1447 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ∈ (0...(♯‘𝑧)))
1514adantr 474 . . . . . . . . . . . . 13 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 + 𝑚) ∈ (0...(♯‘𝑧)))
16 cshwcsh2id.1 . . . . . . . . . . . . . . . . . 18 (𝜑𝑧 ∈ Word 𝑉)
1716adantl 475 . . . . . . . . . . . . . . . . 17 (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → 𝑧 ∈ Word 𝑉)
1817adantl 475 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑧 ∈ Word 𝑉)
19 elfzelz 12642 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(♯‘𝑧)) → 𝑘 ∈ ℤ)
2019ad2antlr 718 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑘 ∈ ℤ)
21 elfzelz 12642 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (0...(♯‘𝑦)) → 𝑚 ∈ ℤ)
2221adantr 474 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → 𝑚 ∈ ℤ)
2322adantr 474 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑚 ∈ ℤ)
24 2cshw 13941 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ Word 𝑉𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚)))
2518, 20, 23, 24syl3anc 1494 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚)))
2625eqeq2d 2835 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) ↔ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))
2726biimpa 470 . . . . . . . . . . . . 13 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))
2815, 27jca 507 . . . . . . . . . . . 12 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))
2928exp41 427 . . . . . . . . . . 11 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑘 ∈ (0...(♯‘𝑧)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))))
3029com23 86 . . . . . . . . . 10 (𝑚 ∈ (0...(♯‘𝑦)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑘 ∈ (0...(♯‘𝑧)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))))
3130com24 95 . . . . . . . . 9 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (𝑘 ∈ (0...(♯‘𝑧)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))))
3231imp 397 . . . . . . . 8 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 ∈ (0...(♯‘𝑧)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3332com12 32 . . . . . . 7 (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3433adantl 475 . . . . . 6 ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
354, 34sylbid 232 . . . . 5 ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3635ancoms 452 . . . 4 ((𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))
3736impcom 398 . . 3 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))
38 oveq2 6918 . . . 4 (𝑛 = (𝑘 + 𝑚) → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift (𝑘 + 𝑚)))
3938rspceeqv 3544 . . 3 (((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))
4037, 39syl6com 37 . 2 (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
41 elfz2 12633 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...(♯‘𝑧)) ↔ ((0 ∈ ℤ ∧ (♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑘𝑘 ≤ (♯‘𝑧))))
42 nn0z 11735 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
43 zaddcl 11752 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 + 𝑚) ∈ ℤ)
4443ex 403 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ℤ → (𝑚 ∈ ℤ → (𝑘 + 𝑚) ∈ ℤ))
4544adantl 475 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚 ∈ ℤ → (𝑘 + 𝑚) ∈ ℤ))
4645impcom 398 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ℤ ∧ ((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 + 𝑚) ∈ ℤ)
47 simprl 787 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ ℤ ∧ ((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (♯‘𝑧) ∈ ℤ)
4846, 47zsubcld 11822 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℤ ∧ ((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ)
4948ex 403 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℤ → (((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
5042, 49syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℕ0 → (((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
5150com12 32 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
52513adant1 1164 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℤ ∧ (♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
5352adantr 474 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℤ ∧ (♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑘𝑘 ≤ (♯‘𝑧))) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
5441, 53sylbi 209 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...(♯‘𝑧)) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ))
556, 54mpan9 502 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ)
5655adantr 474 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ)
57 elfz2nn0 12732 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (0...(♯‘𝑧)) ↔ (𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)))
58 nn0re 11635 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
59 nn0re 11635 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑧) ∈ ℕ0 → (♯‘𝑧) ∈ ℝ)
6058, 59anim12i 606 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → (𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ))
61 nn0re 11635 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
6260, 61anim12i 606 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ))
63 simplr 785 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (♯‘𝑧) ∈ ℝ)
64 readdcl 10342 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑘 + 𝑚) ∈ ℝ)
6564adantlr 706 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑘 + 𝑚) ∈ ℝ)
6663, 65ltnled 10510 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((♯‘𝑧) < (𝑘 + 𝑚) ↔ ¬ (𝑘 + 𝑚) ≤ (♯‘𝑧)))
6763, 65posdifd 10946 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((♯‘𝑧) < (𝑘 + 𝑚) ↔ 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
6867biimpd 221 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((♯‘𝑧) < (𝑘 + 𝑚) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
6966, 68sylbird 252 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7062, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7170ex 403 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → (𝑚 ∈ ℕ0 → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))))
72713adant3 1166 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)) → (𝑚 ∈ ℕ0 → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))))
7357, 72sylbi 209 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...(♯‘𝑧)) → (𝑚 ∈ ℕ0 → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))))
746, 73mpan9 502 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7574com12 32 . . . . . . . . . . . . . . . . . 18 (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7675adantr 474 . . . . . . . . . . . . . . . . 17 ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7776impcom 398 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))
78 elnnz 11721 . . . . . . . . . . . . . . . 16 (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ ↔ (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ ∧ 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))
7956, 77, 78sylanbrc 578 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ)
8079nnnn0d 11685 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ0)
8110ad2antlr 718 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (♯‘𝑧) ∈ ℕ0)
82 cshwcsh2id.2 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))
83 oveq2 6918 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑦) = (♯‘𝑧) → (0...(♯‘𝑦)) = (0...(♯‘𝑧)))
8483eleq2d 2892 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑦) = (♯‘𝑧) → (𝑚 ∈ (0...(♯‘𝑦)) ↔ 𝑚 ∈ (0...(♯‘𝑧))))
8584anbi1d 623 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑦) = (♯‘𝑧) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ↔ (𝑚 ∈ (0...(♯‘𝑧)) ∧ 𝑘 ∈ (0...(♯‘𝑧)))))
86 elfz2nn0 12732 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (0...(♯‘𝑧)) ↔ (𝑚 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑚 ≤ (♯‘𝑧)))
8758adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → 𝑘 ∈ ℝ)
8887, 61anim12i 606 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ))
8959, 59jca 507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((♯‘𝑧) ∈ ℕ0 → ((♯‘𝑧) ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ))
9089ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((♯‘𝑧) ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ))
91 le2add 10841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) ∧ ((♯‘𝑧) ∈ ℝ ∧ (♯‘𝑧) ∈ ℝ)) → ((𝑘 ≤ (♯‘𝑧) ∧ 𝑚 ≤ (♯‘𝑧)) → (𝑘 + 𝑚) ≤ ((♯‘𝑧) + (♯‘𝑧))))
9288, 90, 91syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ≤ (♯‘𝑧) ∧ 𝑚 ≤ (♯‘𝑧)) → (𝑘 + 𝑚) ≤ ((♯‘𝑧) + (♯‘𝑧))))
93 nn0readdcl 11691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑘 + 𝑚) ∈ ℝ)
9493adantlr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑘 + 𝑚) ∈ ℝ)
9559ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (♯‘𝑧) ∈ ℝ)
9694, 95, 95lesubadd2d 10958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧) ↔ (𝑘 + 𝑚) ≤ ((♯‘𝑧) + (♯‘𝑧))))
9792, 96sylibrd 251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ≤ (♯‘𝑧) ∧ 𝑚 ≤ (♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
9897expcomd 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑚 ≤ (♯‘𝑧) → (𝑘 ≤ (♯‘𝑧) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))))
9998ex 403 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → (𝑚 ∈ ℕ0 → (𝑚 ≤ (♯‘𝑧) → (𝑘 ≤ (♯‘𝑧) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))))
10099com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0) → (𝑘 ≤ (♯‘𝑧) → (𝑚 ≤ (♯‘𝑧) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))))
1011003impia 1149 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)) → (𝑚 ≤ (♯‘𝑧) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))))
102101com13 88 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℕ0 → (𝑚 ≤ (♯‘𝑧) → ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))))
103102imp 397 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℕ0𝑚 ≤ (♯‘𝑧)) → ((𝑘 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑘 ≤ (♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
10457, 103syl5bi 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℕ0𝑚 ≤ (♯‘𝑧)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
1051043adant2 1165 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0𝑚 ≤ (♯‘𝑧)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
10686, 105sylbi 209 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (0...(♯‘𝑧)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
107106imp 397 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ (0...(♯‘𝑧)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))
10885, 107syl6bi 245 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑦) = (♯‘𝑧) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
109108adantr 474 . . . . . . . . . . . . . . . . 17 (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
11082, 109syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
111110adantl 475 . . . . . . . . . . . . . . 15 ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
112111impcom 398 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))
113 elfz2nn0 12732 . . . . . . . . . . . . . 14 (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ↔ (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ0 ∧ (♯‘𝑧) ∈ ℕ0 ∧ ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))
11480, 81, 112, 113syl3anbrc 1447 . . . . . . . . . . . . 13 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)))
115114adantr 474 . . . . . . . . . . . 12 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)))
11616adantl 475 . . . . . . . . . . . . . . . . 17 ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → 𝑧 ∈ Word 𝑉)
117116adantl 475 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑧 ∈ Word 𝑉)
11819ad2antlr 718 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑘 ∈ ℤ)
11922adantr 474 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑚 ∈ ℤ)
120117, 118, 119, 24syl3anc 1494 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚)))
12119, 21, 43syl2anr 590 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → (𝑘 + 𝑚) ∈ ℤ)
122 cshwsublen 13924 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ Word 𝑉 ∧ (𝑘 + 𝑚) ∈ ℤ) → (𝑧 cyclShift (𝑘 + 𝑚)) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
123116, 121, 122syl2anr 590 . . . . . . . . . . . . . . 15 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑧 cyclShift (𝑘 + 𝑚)) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
124120, 123eqtrd 2861 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
125124eqeq2d 2835 . . . . . . . . . . . . 13 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) ↔ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))
126125biimpa 470 . . . . . . . . . . . 12 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
127115, 126jca 507 . . . . . . . . . . 11 ((((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) ∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))
128127exp41 427 . . . . . . . . . 10 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
129128com23 86 . . . . . . . . 9 (𝑚 ∈ (0...(♯‘𝑦)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑘 ∈ (0...(♯‘𝑧)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
130129com24 95 . . . . . . . 8 (𝑚 ∈ (0...(♯‘𝑦)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
131130imp 397 . . . . . . 7 ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))))
1323, 131syl6bi 245 . . . . . 6 (𝑦 = (𝑧 cyclShift 𝑘) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
133132com23 86 . . . . 5 (𝑦 = (𝑧 cyclShift 𝑘) → (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))))
134133impcom 398 . . . 4 ((𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))))
135134impcom 398 . . 3 (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))
136 oveq2 6918 . . . 4 (𝑛 = ((𝑘 + 𝑚) − (♯‘𝑧)) → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))
137136rspceeqv 3544 . . 3 ((((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))
138135, 137syl6com 37 . 2 ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
13940, 138pm2.61ian 846 1 (𝜑 → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wrex 3118   class class class wbr 4875  cfv 6127  (class class class)co 6910  cr 10258  0cc0 10259   + caddc 10262   < clt 10398  cle 10399  cmin 10592  cn 11357  0cn0 11625  cz 11711  ...cfz 12626  chash 13417  Word cword 13581   cyclShift ccsh 13911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-inf 8624  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-fz 12627  df-fzo 12768  df-fl 12895  df-mod 12971  df-hash 13418  df-word 13582  df-concat 13638  df-substr 13708  df-pfx 13757  df-csh 13913
This theorem is referenced by:  erclwwlktr  27367  erclwwlkntr  27424
  Copyright terms: Public domain W3C validator