Proof of Theorem cshwcsh2id
| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7420 |
. . . . . . . . 9
⊢ (𝑦 = (𝑧 cyclShift 𝑘) → (𝑦 cyclShift 𝑚) = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) |
| 2 | 1 | eqeq2d 2745 |
. . . . . . . 8
⊢ (𝑦 = (𝑧 cyclShift 𝑘) → (𝑥 = (𝑦 cyclShift 𝑚) ↔ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚))) |
| 3 | 2 | anbi2d 630 |
. . . . . . 7
⊢ (𝑦 = (𝑧 cyclShift 𝑘) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)))) |
| 4 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)))) |
| 5 | | elfznn0 13642 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(0...(♯‘𝑧))
→ 𝑘 ∈
ℕ0) |
| 6 | | elfznn0 13642 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈
(0...(♯‘𝑦))
→ 𝑚 ∈
ℕ0) |
| 7 | | nn0addcl 12544 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (𝑘 + 𝑚) ∈
ℕ0) |
| 8 | 5, 6, 7 | syl2anr 597 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
→ (𝑘 + 𝑚) ∈
ℕ0) |
| 9 | 8 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ∈
ℕ0) |
| 10 | | elfz3nn0 13643 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(0...(♯‘𝑧))
→ (♯‘𝑧)
∈ ℕ0) |
| 11 | 10 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (♯‘𝑧) ∈
ℕ0) |
| 12 | | simprl 770 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ≤ (♯‘𝑧)) |
| 13 | | elfz2nn0 13640 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ↔ ((𝑘 + 𝑚) ∈ ℕ0 ∧
(♯‘𝑧) ∈
ℕ0 ∧ (𝑘 + 𝑚) ≤ (♯‘𝑧))) |
| 14 | 9, 11, 12, 13 | syl3anbrc 1343 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑘 + 𝑚) ∈ (0...(♯‘𝑧))) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 + 𝑚) ∈ (0...(♯‘𝑧))) |
| 16 | | cshwcsh2id.1 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑧 ∈ Word 𝑉) |
| 17 | 16 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → 𝑧 ∈ Word 𝑉) |
| 18 | 17 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑧 ∈ Word 𝑉) |
| 19 | | elfzelz 13546 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(0...(♯‘𝑧))
→ 𝑘 ∈
ℤ) |
| 20 | 19 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑘 ∈ ℤ) |
| 21 | | elfzelz 13546 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈
(0...(♯‘𝑦))
→ 𝑚 ∈
ℤ) |
| 22 | 21 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
→ 𝑚 ∈
ℤ) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑚 ∈ ℤ) |
| 24 | | 2cshw 14833 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ Word 𝑉 ∧ 𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚))) |
| 25 | 18, 20, 23, 24 | syl3anc 1372 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚))) |
| 26 | 25 | eqeq2d 2745 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) ↔ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))) |
| 27 | 26 | biimpa 476 |
. . . . . . . . . . . . 13
⊢ ((((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))) |
| 28 | 15, 27 | jca 511 |
. . . . . . . . . . . 12
⊢ ((((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ ((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))) |
| 29 | 28 | exp41 434 |
. . . . . . . . . . 11
⊢ (𝑚 ∈
(0...(♯‘𝑦))
→ (𝑘 ∈
(0...(♯‘𝑧))
→ (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))) |
| 30 | 29 | com23 86 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(0...(♯‘𝑦))
→ (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑘 ∈ (0...(♯‘𝑧)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))) |
| 31 | 30 | com24 95 |
. . . . . . . . 9
⊢ (𝑚 ∈
(0...(♯‘𝑦))
→ (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (𝑘 ∈ (0...(♯‘𝑧)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))))) |
| 32 | 31 | imp 406 |
. . . . . . . 8
⊢ ((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 ∈ (0...(♯‘𝑧)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))) |
| 33 | 32 | com12 32 |
. . . . . . 7
⊢ (𝑘 ∈
(0...(♯‘𝑧))
→ ((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))) |
| 34 | 33 | adantl 481 |
. . . . . 6
⊢ ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))) |
| 35 | 4, 34 | sylbid 240 |
. . . . 5
⊢ ((𝑦 = (𝑧 cyclShift 𝑘) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))) |
| 36 | 35 | ancoms 458 |
. . . 4
⊢ ((𝑘 ∈
(0...(♯‘𝑧))
∧ 𝑦 = (𝑧 cyclShift 𝑘)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚)))))) |
| 37 | 36 | impcom 407 |
. . 3
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))))) |
| 38 | | oveq2 7421 |
. . . 4
⊢ (𝑛 = (𝑘 + 𝑚) → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift (𝑘 + 𝑚))) |
| 39 | 38 | rspceeqv 3628 |
. . 3
⊢ (((𝑘 + 𝑚) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift (𝑘 + 𝑚))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)) |
| 40 | 37, 39 | syl6com 37 |
. 2
⊢ (((𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) |
| 41 | | elfz2 13536 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈
(0...(♯‘𝑧))
↔ ((0 ∈ ℤ ∧ (♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑘 ∧ 𝑘 ≤ (♯‘𝑧)))) |
| 42 | | nn0z 12621 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℤ) |
| 43 | | zaddcl 12640 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 + 𝑚) ∈ ℤ) |
| 44 | 43 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ ℤ → (𝑚 ∈ ℤ → (𝑘 + 𝑚) ∈ ℤ)) |
| 45 | 44 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((♯‘𝑧)
∈ ℤ ∧ 𝑘
∈ ℤ) → (𝑚
∈ ℤ → (𝑘 +
𝑚) ∈
ℤ)) |
| 46 | 45 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑚 ∈ ℤ ∧
((♯‘𝑧) ∈
ℤ ∧ 𝑘 ∈
ℤ)) → (𝑘 + 𝑚) ∈
ℤ) |
| 47 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑚 ∈ ℤ ∧
((♯‘𝑧) ∈
ℤ ∧ 𝑘 ∈
ℤ)) → (♯‘𝑧) ∈ ℤ) |
| 48 | 46, 47 | zsubcld 12710 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑚 ∈ ℤ ∧
((♯‘𝑧) ∈
ℤ ∧ 𝑘 ∈
ℤ)) → ((𝑘 +
𝑚) −
(♯‘𝑧)) ∈
ℤ) |
| 49 | 48 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈ ℤ →
(((♯‘𝑧) ∈
ℤ ∧ 𝑘 ∈
ℤ) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈
ℤ)) |
| 50 | 42, 49 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ ℕ0
→ (((♯‘𝑧)
∈ ℤ ∧ 𝑘
∈ ℤ) → ((𝑘
+ 𝑚) −
(♯‘𝑧)) ∈
ℤ)) |
| 51 | 50 | com12 32 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((♯‘𝑧)
∈ ℤ ∧ 𝑘
∈ ℤ) → (𝑚
∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ)) |
| 52 | 51 | 3adant1 1130 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ ℤ ∧ (♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ)) |
| 53 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((0
∈ ℤ ∧ (♯‘𝑧) ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤ 𝑘 ∧ 𝑘 ≤ (♯‘𝑧))) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ)) |
| 54 | 41, 53 | sylbi 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈
(0...(♯‘𝑧))
→ (𝑚 ∈
ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ)) |
| 55 | 6, 54 | mpan9 506 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
→ ((𝑘 + 𝑚) − (♯‘𝑧)) ∈
ℤ) |
| 56 | 55 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ) |
| 57 | | elfz2nn0 13640 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈
(0...(♯‘𝑧))
↔ (𝑘 ∈
ℕ0 ∧ (♯‘𝑧) ∈ ℕ0 ∧ 𝑘 ≤ (♯‘𝑧))) |
| 58 | | nn0re 12518 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℝ) |
| 59 | | nn0re 12518 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((♯‘𝑧)
∈ ℕ0 → (♯‘𝑧) ∈ ℝ) |
| 60 | 58, 59 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) → (𝑘 ∈ ℝ ∧ (♯‘𝑧) ∈
ℝ)) |
| 61 | | nn0re 12518 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℝ) |
| 62 | 60, 61 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℝ ∧
(♯‘𝑧) ∈
ℝ) ∧ 𝑚 ∈
ℝ)) |
| 63 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑘 ∈ ℝ ∧
(♯‘𝑧) ∈
ℝ) ∧ 𝑚 ∈
ℝ) → (♯‘𝑧) ∈ ℝ) |
| 64 | | readdcl 11220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑘 + 𝑚) ∈ ℝ) |
| 65 | 64 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑘 ∈ ℝ ∧
(♯‘𝑧) ∈
ℝ) ∧ 𝑚 ∈
ℝ) → (𝑘 + 𝑚) ∈
ℝ) |
| 66 | 63, 65 | ltnled 11390 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑘 ∈ ℝ ∧
(♯‘𝑧) ∈
ℝ) ∧ 𝑚 ∈
ℝ) → ((♯‘𝑧) < (𝑘 + 𝑚) ↔ ¬ (𝑘 + 𝑚) ≤ (♯‘𝑧))) |
| 67 | 63, 65 | posdifd 11832 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑘 ∈ ℝ ∧
(♯‘𝑧) ∈
ℝ) ∧ 𝑚 ∈
ℝ) → ((♯‘𝑧) < (𝑘 + 𝑚) ↔ 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))) |
| 68 | 67 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑘 ∈ ℝ ∧
(♯‘𝑧) ∈
ℝ) ∧ 𝑚 ∈
ℝ) → ((♯‘𝑧) < (𝑘 + 𝑚) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))) |
| 69 | 66, 68 | sylbird 260 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑘 ∈ ℝ ∧
(♯‘𝑧) ∈
ℝ) ∧ 𝑚 ∈
ℝ) → (¬ (𝑘 +
𝑚) ≤
(♯‘𝑧) → 0
< ((𝑘 + 𝑚) − (♯‘𝑧)))) |
| 70 | 62, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (¬
(𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))) |
| 71 | 70 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) → (𝑚 ∈ ℕ0 → (¬
(𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))) |
| 72 | 71 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0 ∧ 𝑘 ≤ (♯‘𝑧)) → (𝑚 ∈ ℕ0 → (¬
(𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))) |
| 73 | 57, 72 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈
(0...(♯‘𝑧))
→ (𝑚 ∈
ℕ0 → (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))))) |
| 74 | 6, 73 | mpan9 506 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
→ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))) |
| 75 | 74 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(𝑘 + 𝑚) ≤ (♯‘𝑧) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))) |
| 76 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
(𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))) |
| 77 | 76 | impcom 407 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 0 < ((𝑘 + 𝑚) − (♯‘𝑧))) |
| 78 | | elnnz 12606 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ ↔ (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℤ ∧ 0 < ((𝑘 + 𝑚) − (♯‘𝑧)))) |
| 79 | 56, 77, 78 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ) |
| 80 | 79 | nnnn0d 12570 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈
ℕ0) |
| 81 | 10 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (♯‘𝑧) ∈
ℕ0) |
| 82 | | cshwcsh2id.2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) |
| 83 | | oveq2 7421 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝑦) =
(♯‘𝑧) →
(0...(♯‘𝑦)) =
(0...(♯‘𝑧))) |
| 84 | 83 | eleq2d 2819 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝑦) =
(♯‘𝑧) →
(𝑚 ∈
(0...(♯‘𝑦))
↔ 𝑚 ∈
(0...(♯‘𝑧)))) |
| 85 | 84 | anbi1d 631 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑦) =
(♯‘𝑧) →
((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
↔ (𝑚 ∈
(0...(♯‘𝑧))
∧ 𝑘 ∈
(0...(♯‘𝑧))))) |
| 86 | | elfz2nn0 13640 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈
(0...(♯‘𝑧))
↔ (𝑚 ∈
ℕ0 ∧ (♯‘𝑧) ∈ ℕ0 ∧ 𝑚 ≤ (♯‘𝑧))) |
| 87 | 58 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) → 𝑘 ∈ ℝ) |
| 88 | 87, 61 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑘 ∈ ℝ ∧ 𝑚 ∈
ℝ)) |
| 89 | 59, 59 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((♯‘𝑧)
∈ ℕ0 → ((♯‘𝑧) ∈ ℝ ∧ (♯‘𝑧) ∈
ℝ)) |
| 90 | 89 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) ∧ 𝑚 ∈ ℕ0) →
((♯‘𝑧) ∈
ℝ ∧ (♯‘𝑧) ∈ ℝ)) |
| 91 | | le2add 11727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ) ∧
((♯‘𝑧) ∈
ℝ ∧ (♯‘𝑧) ∈ ℝ)) → ((𝑘 ≤ (♯‘𝑧) ∧ 𝑚 ≤ (♯‘𝑧)) → (𝑘 + 𝑚) ≤ ((♯‘𝑧) + (♯‘𝑧)))) |
| 92 | 88, 90, 91 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ≤ (♯‘𝑧) ∧ 𝑚 ≤ (♯‘𝑧)) → (𝑘 + 𝑚) ≤ ((♯‘𝑧) + (♯‘𝑧)))) |
| 93 | | nn0readdcl 12576 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑘 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (𝑘 + 𝑚) ∈ ℝ) |
| 94 | 93 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑘 + 𝑚) ∈ ℝ) |
| 95 | 59 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) ∧ 𝑚 ∈ ℕ0) →
(♯‘𝑧) ∈
ℝ) |
| 96 | 94, 95, 95 | lesubadd2d 11844 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧) ↔ (𝑘 + 𝑚) ≤ ((♯‘𝑧) + (♯‘𝑧)))) |
| 97 | 92, 96 | sylibrd 259 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ≤ (♯‘𝑧) ∧ 𝑚 ≤ (♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))) |
| 98 | 97 | expcomd 416 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) ∧ 𝑚 ∈ ℕ0) → (𝑚 ≤ (♯‘𝑧) → (𝑘 ≤ (♯‘𝑧) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))) |
| 99 | 98 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) → (𝑚 ∈ ℕ0 → (𝑚 ≤ (♯‘𝑧) → (𝑘 ≤ (♯‘𝑧) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))))) |
| 100 | 99 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0) → (𝑘 ≤ (♯‘𝑧) → (𝑚 ≤ (♯‘𝑧) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))))) |
| 101 | 100 | 3impia 1117 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑘 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0 ∧ 𝑘 ≤ (♯‘𝑧)) → (𝑚 ≤ (♯‘𝑧) → (𝑚 ∈ ℕ0 → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))) |
| 102 | 101 | com13 88 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 ∈ ℕ0
→ (𝑚 ≤
(♯‘𝑧) →
((𝑘 ∈
ℕ0 ∧ (♯‘𝑧) ∈ ℕ0 ∧ 𝑘 ≤ (♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)))) |
| 103 | 102 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 ≤
(♯‘𝑧)) →
((𝑘 ∈
ℕ0 ∧ (♯‘𝑧) ∈ ℕ0 ∧ 𝑘 ≤ (♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))) |
| 104 | 57, 103 | biimtrid 242 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 ≤
(♯‘𝑧)) →
(𝑘 ∈
(0...(♯‘𝑧))
→ ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))) |
| 105 | 104 | 3adant2 1131 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 ∈ ℕ0
∧ (♯‘𝑧)
∈ ℕ0 ∧ 𝑚 ≤ (♯‘𝑧)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))) |
| 106 | 86, 105 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈
(0...(♯‘𝑧))
→ (𝑘 ∈
(0...(♯‘𝑧))
→ ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))) |
| 107 | 106 | imp 406 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈
(0...(♯‘𝑧))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
→ ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)) |
| 108 | 85, 107 | biimtrdi 253 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑦) =
(♯‘𝑧) →
((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
→ ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))) |
| 109 | 108 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((♯‘𝑦)
= (♯‘𝑧) ∧
(♯‘𝑥) =
(♯‘𝑦)) →
((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
→ ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))) |
| 110 | 82, 109 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))) |
| 111 | 110 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((¬
(𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑘 ∈ (0...(♯‘𝑧))) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))) |
| 112 | 111 | impcom 407 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧)) |
| 113 | | elfz2nn0 13640 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ↔ (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ ℕ0 ∧
(♯‘𝑧) ∈
ℕ0 ∧ ((𝑘 + 𝑚) − (♯‘𝑧)) ≤ (♯‘𝑧))) |
| 114 | 80, 81, 112, 113 | syl3anbrc 1343 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧))) |
| 115 | 114 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → ((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧))) |
| 116 | 16 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
(𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → 𝑧 ∈ Word 𝑉) |
| 117 | 116 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑧 ∈ Word 𝑉) |
| 118 | 19 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑘 ∈ ℤ) |
| 119 | 22 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → 𝑚 ∈ ℤ) |
| 120 | 117, 118,
119, 24 | syl3anc 1372 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift (𝑘 + 𝑚))) |
| 121 | 19, 21, 43 | syl2anr 597 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
→ (𝑘 + 𝑚) ∈
ℤ) |
| 122 | | cshwsublen 14816 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ Word 𝑉 ∧ (𝑘 + 𝑚) ∈ ℤ) → (𝑧 cyclShift (𝑘 + 𝑚)) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))) |
| 123 | 116, 121,
122 | syl2anr 597 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑧 cyclShift (𝑘 + 𝑚)) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))) |
| 124 | 120, 123 | eqtrd 2769 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → ((𝑧 cyclShift 𝑘) cyclShift 𝑚) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))) |
| 125 | 124 | eqeq2d 2745 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) ↔ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))) |
| 126 | 125 | biimpa 476 |
. . . . . . . . . . . 12
⊢ ((((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))) |
| 127 | 115, 126 | jca 511 |
. . . . . . . . . . 11
⊢ ((((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑘 ∈
(0...(♯‘𝑧)))
∧ (¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑)) ∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))) |
| 128 | 127 | exp41 434 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(0...(♯‘𝑦))
→ (𝑘 ∈
(0...(♯‘𝑧))
→ ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))))) |
| 129 | 128 | com23 86 |
. . . . . . . . 9
⊢ (𝑚 ∈
(0...(♯‘𝑦))
→ ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (𝑘 ∈ (0...(♯‘𝑧)) → (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))))) |
| 130 | 129 | com24 95 |
. . . . . . . 8
⊢ (𝑚 ∈
(0...(♯‘𝑦))
→ (𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))))) |
| 131 | 130 | imp 406 |
. . . . . . 7
⊢ ((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑥 = ((𝑧 cyclShift 𝑘) cyclShift 𝑚)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))) |
| 132 | 3, 131 | biimtrdi 253 |
. . . . . 6
⊢ (𝑦 = (𝑧 cyclShift 𝑘) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (𝑘 ∈ (0...(♯‘𝑧)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))))) |
| 133 | 132 | com23 86 |
. . . . 5
⊢ (𝑦 = (𝑧 cyclShift 𝑘) → (𝑘 ∈ (0...(♯‘𝑧)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))))) |
| 134 | 133 | impcom 407 |
. . . 4
⊢ ((𝑘 ∈
(0...(♯‘𝑧))
∧ 𝑦 = (𝑧 cyclShift 𝑘)) → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧))))))) |
| 135 | 134 | impcom 407 |
. . 3
⊢ (((𝑚 ∈
(0...(♯‘𝑦))
∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ((¬ (𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))))) |
| 136 | | oveq2 7421 |
. . . 4
⊢ (𝑛 = ((𝑘 + 𝑚) − (♯‘𝑧)) → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))) |
| 137 | 136 | rspceeqv 3628 |
. . 3
⊢ ((((𝑘 + 𝑚) − (♯‘𝑧)) ∈ (0...(♯‘𝑧)) ∧ 𝑥 = (𝑧 cyclShift ((𝑘 + 𝑚) − (♯‘𝑧)))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)) |
| 138 | 135, 137 | syl6com 37 |
. 2
⊢ ((¬
(𝑘 + 𝑚) ≤ (♯‘𝑧) ∧ 𝜑) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) |
| 139 | 40, 138 | pm2.61ian 811 |
1
⊢ (𝜑 → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛))) |