Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincsumcl Structured version   Visualization version   GIF version

Theorem lincsumcl 47065
Description: The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypothesis
Ref Expression
lincsumcl.b + = (+gβ€˜π‘€)
Assertion
Ref Expression
lincsumcl (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐢 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) β†’ (𝐢 + 𝐷) ∈ (𝑀 LinCo 𝑉))

Proof of Theorem lincsumcl
Dummy variables 𝑠 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . . 5 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
2 eqid 2732 . . . . 5 (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)
3 eqid 2732 . . . . 5 (Baseβ€˜(Scalarβ€˜π‘€)) = (Baseβ€˜(Scalarβ€˜π‘€))
41, 2, 3lcoval 47046 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝐢 ∈ (𝑀 LinCo 𝑉) ↔ (𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉)))))
51, 2, 3lcoval 47046 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝐷 ∈ (𝑀 LinCo 𝑉) ↔ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))))
64, 5anbi12d 631 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((𝐢 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) ↔ ((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))))))
7 simpll 765 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ ((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))))) β†’ 𝑀 ∈ LMod)
8 simpll 765 . . . . . . 7 (((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) β†’ 𝐢 ∈ (Baseβ€˜π‘€))
98adantl 482 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ ((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))))) β†’ 𝐢 ∈ (Baseβ€˜π‘€))
10 simprl 769 . . . . . . 7 (((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) β†’ 𝐷 ∈ (Baseβ€˜π‘€))
1110adantl 482 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ ((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))))) β†’ 𝐷 ∈ (Baseβ€˜π‘€))
12 lincsumcl.b . . . . . . 7 + = (+gβ€˜π‘€)
131, 12lmodvacl 20478 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) β†’ (𝐢 + 𝐷) ∈ (Baseβ€˜π‘€))
147, 9, 11, 13syl3anc 1371 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ ((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))))) β†’ (𝐢 + 𝐷) ∈ (Baseβ€˜π‘€))
152lmodfgrp 20472 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ LMod β†’ (Scalarβ€˜π‘€) ∈ Grp)
1615grpmndd 18828 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ LMod β†’ (Scalarβ€˜π‘€) ∈ Mnd)
1716adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (Scalarβ€˜π‘€) ∈ Mnd)
1817adantl 482 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ (Scalarβ€˜π‘€) ∈ Mnd)
19 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
2019adantl 482 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
21 simpll 765 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) β†’ 𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
22 simpl 483 . . . . . . . . . . . . . . . . . 18 ((π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
2321, 22anim12i 613 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) β†’ (𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)))
2423adantr 481 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ (𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)))
25 eqid 2732 . . . . . . . . . . . . . . . . 17 (+gβ€˜(Scalarβ€˜π‘€)) = (+gβ€˜(Scalarβ€˜π‘€))
263, 25ofaddmndmap 46972 . . . . . . . . . . . . . . . 16 (((Scalarβ€˜π‘€) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€) ∧ (𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))) β†’ (𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
2718, 20, 24, 26syl3anc 1371 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ (𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
2816anim1i 615 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((Scalarβ€˜π‘€) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)))
2928adantl 482 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ ((Scalarβ€˜π‘€) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)))
30 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) β†’ 𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)))
3130adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) β†’ 𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)))
32 simprl 769 . . . . . . . . . . . . . . . . . 18 ((π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)))
3331, 32anim12i 613 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) β†’ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€))))
3433adantr 481 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€))))
353mndpfsupp 47005 . . . . . . . . . . . . . . . 16 ((((Scalarβ€˜π‘€) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)))) β†’ (𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯) finSupp (0gβ€˜(Scalarβ€˜π‘€)))
3629, 24, 34, 35syl3anc 1371 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ (𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯) finSupp (0gβ€˜(Scalarβ€˜π‘€)))
37 oveq12 7414 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐢 = (𝑦( linC β€˜π‘€)𝑉) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)) β†’ (𝐢 + 𝐷) = ((𝑦( linC β€˜π‘€)𝑉) + (π‘₯( linC β€˜π‘€)𝑉)))
3837expcom 414 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐷 = (π‘₯( linC β€˜π‘€)𝑉) β†’ (𝐢 = (𝑦( linC β€˜π‘€)𝑉) β†’ (𝐢 + 𝐷) = ((𝑦( linC β€˜π‘€)𝑉) + (π‘₯( linC β€˜π‘€)𝑉))))
3938adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)) β†’ (𝐢 = (𝑦( linC β€˜π‘€)𝑉) β†’ (𝐢 + 𝐷) = ((𝑦( linC β€˜π‘€)𝑉) + (π‘₯( linC β€˜π‘€)𝑉))))
4039adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ (𝐢 = (𝑦( linC β€˜π‘€)𝑉) β†’ (𝐢 + 𝐷) = ((𝑦( linC β€˜π‘€)𝑉) + (π‘₯( linC β€˜π‘€)𝑉))))
4140com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐢 = (𝑦( linC β€˜π‘€)𝑉) β†’ ((π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ (𝐢 + 𝐷) = ((𝑦( linC β€˜π‘€)𝑉) + (π‘₯( linC β€˜π‘€)𝑉))))
4241adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉)) β†’ ((π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ (𝐢 + 𝐷) = ((𝑦( linC β€˜π‘€)𝑉) + (π‘₯( linC β€˜π‘€)𝑉))))
4342adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) β†’ ((π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ (𝐢 + 𝐷) = ((𝑦( linC β€˜π‘€)𝑉) + (π‘₯( linC β€˜π‘€)𝑉))))
4443adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) β†’ ((π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ (𝐢 + 𝐷) = ((𝑦( linC β€˜π‘€)𝑉) + (π‘₯( linC β€˜π‘€)𝑉))))
4544imp 407 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) β†’ (𝐢 + 𝐷) = ((𝑦( linC β€˜π‘€)𝑉) + (π‘₯( linC β€˜π‘€)𝑉)))
4645adantr 481 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ (𝐢 + 𝐷) = ((𝑦( linC β€˜π‘€)𝑉) + (π‘₯( linC β€˜π‘€)𝑉)))
47 simpr 485 . . . . . . . . . . . . . . . . 17 (((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)))
48 eqid 2732 . . . . . . . . . . . . . . . . . 18 (𝑦( linC β€˜π‘€)𝑉) = (𝑦( linC β€˜π‘€)𝑉)
49 eqid 2732 . . . . . . . . . . . . . . . . . 18 (π‘₯( linC β€˜π‘€)𝑉) = (π‘₯( linC β€˜π‘€)𝑉)
5012, 48, 49, 2, 3, 25lincsum 47063 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)))) β†’ ((𝑦( linC β€˜π‘€)𝑉) + (π‘₯( linC β€˜π‘€)𝑉)) = ((𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯)( linC β€˜π‘€)𝑉))
5147, 24, 34, 50syl3anc 1371 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ ((𝑦( linC β€˜π‘€)𝑉) + (π‘₯( linC β€˜π‘€)𝑉)) = ((𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯)( linC β€˜π‘€)𝑉))
5246, 51eqtrd 2772 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ (𝐢 + 𝐷) = ((𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯)( linC β€˜π‘€)𝑉))
53 breq1 5150 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯) β†’ (𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ↔ (𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯) finSupp (0gβ€˜(Scalarβ€˜π‘€))))
54 oveq1 7412 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯) β†’ (𝑠( linC β€˜π‘€)𝑉) = ((𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯)( linC β€˜π‘€)𝑉))
5554eqeq2d 2743 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯) β†’ ((𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉) ↔ (𝐢 + 𝐷) = ((𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯)( linC β€˜π‘€)𝑉)))
5653, 55anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯) β†’ ((𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉)) ↔ ((𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = ((𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯)( linC β€˜π‘€)𝑉))))
5756rspcev 3612 . . . . . . . . . . . . . . 15 (((𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ ((𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = ((𝑦 ∘f (+gβ€˜(Scalarβ€˜π‘€))π‘₯)( linC β€˜π‘€)𝑉))) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉)))
5827, 36, 52, 57syl12anc 835 . . . . . . . . . . . . . 14 (((((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€))) ∧ (π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉)))
5958exp41 435 . . . . . . . . . . . . 13 ((𝑦 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) β†’ ((𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) β†’ ((π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉))))))
6059rexlimiva 3147 . . . . . . . . . . . 12 (βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉)) β†’ ((𝐢 ∈ (Baseβ€˜π‘€) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) β†’ ((π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉))))))
6160expd 416 . . . . . . . . . . 11 (βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉)) β†’ (𝐢 ∈ (Baseβ€˜π‘€) β†’ (𝐷 ∈ (Baseβ€˜π‘€) β†’ ((π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉)))))))
6261impcom 408 . . . . . . . . . 10 ((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) β†’ (𝐷 ∈ (Baseβ€˜π‘€) β†’ ((π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉))))))
6362com13 88 . . . . . . . . 9 ((π‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ (𝐷 ∈ (Baseβ€˜π‘€) β†’ ((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) β†’ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉))))))
6463rexlimiva 3147 . . . . . . . 8 (βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)) β†’ (𝐷 ∈ (Baseβ€˜π‘€) β†’ ((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) β†’ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉))))))
6564impcom 408 . . . . . . 7 ((𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ ((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) β†’ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉)))))
6665impcom 408 . . . . . 6 (((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) β†’ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉))))
6766impcom 408 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ ((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))))) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉)))
681, 2, 3lcoval 47046 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((𝐢 + 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐢 + 𝐷) ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉)))))
6968adantr 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ ((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))))) β†’ ((𝐢 + 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐢 + 𝐷) ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 + 𝐷) = (𝑠( linC β€˜π‘€)𝑉)))))
7014, 67, 69mpbir2and 711 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ ((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))))) β†’ (𝐢 + 𝐷) ∈ (𝑀 LinCo 𝑉))
7170ex 413 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (((𝐢 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘¦ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑦 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐢 = (𝑦( linC β€˜π‘€)𝑉))) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) β†’ (𝐢 + 𝐷) ∈ (𝑀 LinCo 𝑉)))
726, 71sylbid 239 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((𝐢 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) β†’ (𝐢 + 𝐷) ∈ (𝑀 LinCo 𝑉)))
7372imp 407 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (𝐢 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) β†’ (𝐢 + 𝐷) ∈ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  π’« cpw 4601   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405   ∘f cof 7664   ↑m cmap 8816   finSupp cfsupp 9357  Basecbs 17140  +gcplusg 17193  Scalarcsca 17196  0gc0g 17381  Mndcmnd 18621  LModclmod 20463   linC clinc 47038   LinCo clinco 47039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-gsum 17384  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-lmod 20465  df-linc 47040  df-lco 47041
This theorem is referenced by:  lincsumscmcl  47067
  Copyright terms: Public domain W3C validator