Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincsumcl Structured version   Visualization version   GIF version

Theorem lincsumcl 44840
Description: The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypothesis
Ref Expression
lincsumcl.b + = (+g𝑀)
Assertion
Ref Expression
lincsumcl (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))

Proof of Theorem lincsumcl
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2798 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
3 eqid 2798 . . . . 5 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
41, 2, 3lcoval 44821 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)))))
51, 2, 3lcoval 44821 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐷 ∈ (𝑀 LinCo 𝑉) ↔ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))))
64, 5anbi12d 633 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) ↔ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))))
7 simpll 766 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝑀 ∈ LMod)
8 simpll 766 . . . . . . 7 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝐶 ∈ (Base‘𝑀))
98adantl 485 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝐶 ∈ (Base‘𝑀))
10 simprl 770 . . . . . . 7 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝐷 ∈ (Base‘𝑀))
1110adantl 485 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝐷 ∈ (Base‘𝑀))
12 lincsumcl.b . . . . . . 7 + = (+g𝑀)
131, 12lmodvacl 19641 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → (𝐶 + 𝐷) ∈ (Base‘𝑀))
147, 9, 11, 13syl3anc 1368 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → (𝐶 + 𝐷) ∈ (Base‘𝑀))
152lmodfgrp 19636 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Grp)
16 grpmnd 18102 . . . . . . . . . . . . . . . . . . 19 ((Scalar‘𝑀) ∈ Grp → (Scalar‘𝑀) ∈ Mnd)
1715, 16syl 17 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Mnd)
1817adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Scalar‘𝑀) ∈ Mnd)
1918adantl 485 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (Scalar‘𝑀) ∈ Mnd)
20 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
2120adantl 485 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
22 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → 𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
23 simpl 486 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
2422, 23anim12i 615 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)))
2524adantr 484 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)))
26 eqid 2798 . . . . . . . . . . . . . . . . 17 (+g‘(Scalar‘𝑀)) = (+g‘(Scalar‘𝑀))
273, 26ofaddmndmap 44745 . . . . . . . . . . . . . . . 16 (((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
2819, 21, 25, 27syl3anc 1368 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
2917anim1i 617 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
3029adantl 485 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
31 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → 𝑦 finSupp (0g‘(Scalar‘𝑀)))
3231adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → 𝑦 finSupp (0g‘(Scalar‘𝑀)))
33 simprl 770 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → 𝑥 finSupp (0g‘(Scalar‘𝑀)))
3432, 33anim12i 615 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀))))
3534adantr 484 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀))))
363mndpfsupp 44778 . . . . . . . . . . . . . . . 16 ((((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀)))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)))
3730, 25, 35, 36syl3anc 1368 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)))
38 oveq12 7144 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐶 = (𝑦( linC ‘𝑀)𝑉) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
3938expcom 417 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐷 = (𝑥( linC ‘𝑀)𝑉) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4039adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4140adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4241com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 = (𝑦( linC ‘𝑀)𝑉) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4342adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4443adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4544adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4645imp 410 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
4746adantr 484 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
48 simpr 488 . . . . . . . . . . . . . . . . 17 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
49 eqid 2798 . . . . . . . . . . . . . . . . . 18 (𝑦( linC ‘𝑀)𝑉) = (𝑦( linC ‘𝑀)𝑉)
50 eqid 2798 . . . . . . . . . . . . . . . . . 18 (𝑥( linC ‘𝑀)𝑉) = (𝑥( linC ‘𝑀)𝑉)
5112, 49, 50, 2, 3, 26lincsum 44838 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀)))) → ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5248, 25, 35, 51syl3anc 1368 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5347, 52eqtrd 2833 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
54 breq1 5033 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → (𝑠 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀))))
55 oveq1 7142 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → (𝑠( linC ‘𝑀)𝑉) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5655eqeq2d 2809 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → ((𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉) ↔ (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉)))
5754, 56anbi12d 633 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → ((𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))))
5857rspcev 3571 . . . . . . . . . . . . . . 15 (((𝑦f (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ ((𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
5928, 37, 53, 58syl12anc 835 . . . . . . . . . . . . . 14 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
6059exp41 438 . . . . . . . . . . . . 13 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6160rexlimiva 3240 . . . . . . . . . . . 12 (∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → ((𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6261expd 419 . . . . . . . . . . 11 (∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → (𝐶 ∈ (Base‘𝑀) → (𝐷 ∈ (Base‘𝑀) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))))
6362impcom 411 . . . . . . . . . 10 ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → (𝐷 ∈ (Base‘𝑀) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6463com13 88 . . . . . . . . 9 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐷 ∈ (Base‘𝑀) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6564rexlimiva 3240 . . . . . . . 8 (∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐷 ∈ (Base‘𝑀) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6665impcom 411 . . . . . . 7 ((𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
6766impcom 411 . . . . . 6 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))
6867impcom 411 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
691, 2, 3lcoval 44821 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐶 + 𝐷) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
7069adantr 484 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → ((𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐶 + 𝐷) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
7114, 68, 70mpbir2and 712 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))
7271ex 416 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉)))
736, 72sylbid 243 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉)))
7473imp 410 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  𝒫 cpw 4497   class class class wbr 5030  cfv 6324  (class class class)co 7135  f cof 7387  m cmap 8389   finSupp cfsupp 8817  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560  0gc0g 16705  Mndcmnd 17903  Grpcgrp 18095  LModclmod 19627   linC clinc 44813   LinCo clinco 44814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-linc 44815  df-lco 44816
This theorem is referenced by:  lincsumscmcl  44842
  Copyright terms: Public domain W3C validator