Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincsumcl Structured version   Visualization version   GIF version

Theorem lincsumcl 46502
Description: The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypothesis
Ref Expression
lincsumcl.b + = (+g𝑀)
Assertion
Ref Expression
lincsumcl (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))

Proof of Theorem lincsumcl
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2736 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
3 eqid 2736 . . . . 5 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
41, 2, 3lcoval 46483 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)))))
51, 2, 3lcoval 46483 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐷 ∈ (𝑀 LinCo 𝑉) ↔ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))))
64, 5anbi12d 631 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) ↔ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))))
7 simpll 765 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝑀 ∈ LMod)
8 simpll 765 . . . . . . 7 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝐶 ∈ (Base‘𝑀))
98adantl 482 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝐶 ∈ (Base‘𝑀))
10 simprl 769 . . . . . . 7 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝐷 ∈ (Base‘𝑀))
1110adantl 482 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝐷 ∈ (Base‘𝑀))
12 lincsumcl.b . . . . . . 7 + = (+g𝑀)
131, 12lmodvacl 20336 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → (𝐶 + 𝐷) ∈ (Base‘𝑀))
147, 9, 11, 13syl3anc 1371 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → (𝐶 + 𝐷) ∈ (Base‘𝑀))
152lmodfgrp 20331 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Grp)
1615grpmndd 18760 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Mnd)
1716adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Scalar‘𝑀) ∈ Mnd)
1817adantl 482 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (Scalar‘𝑀) ∈ Mnd)
19 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
2019adantl 482 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
21 simpll 765 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → 𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
22 simpl 483 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
2321, 22anim12i 613 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)))
2423adantr 481 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)))
25 eqid 2736 . . . . . . . . . . . . . . . . 17 (+g‘(Scalar‘𝑀)) = (+g‘(Scalar‘𝑀))
263, 25ofaddmndmap 46409 . . . . . . . . . . . . . . . 16 (((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
2718, 20, 24, 26syl3anc 1371 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
2816anim1i 615 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
2928adantl 482 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
30 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → 𝑦 finSupp (0g‘(Scalar‘𝑀)))
3130adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → 𝑦 finSupp (0g‘(Scalar‘𝑀)))
32 simprl 769 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → 𝑥 finSupp (0g‘(Scalar‘𝑀)))
3331, 32anim12i 613 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀))))
3433adantr 481 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀))))
353mndpfsupp 46442 . . . . . . . . . . . . . . . 16 ((((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀)))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)))
3629, 24, 34, 35syl3anc 1371 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)))
37 oveq12 7366 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐶 = (𝑦( linC ‘𝑀)𝑉) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
3837expcom 414 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐷 = (𝑥( linC ‘𝑀)𝑉) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
3938adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4039adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4140com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 = (𝑦( linC ‘𝑀)𝑉) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4241adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4342adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4443adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4544imp 407 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
4645adantr 481 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
47 simpr 485 . . . . . . . . . . . . . . . . 17 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
48 eqid 2736 . . . . . . . . . . . . . . . . . 18 (𝑦( linC ‘𝑀)𝑉) = (𝑦( linC ‘𝑀)𝑉)
49 eqid 2736 . . . . . . . . . . . . . . . . . 18 (𝑥( linC ‘𝑀)𝑉) = (𝑥( linC ‘𝑀)𝑉)
5012, 48, 49, 2, 3, 25lincsum 46500 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀)))) → ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5147, 24, 34, 50syl3anc 1371 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5246, 51eqtrd 2776 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
53 breq1 5108 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → (𝑠 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀))))
54 oveq1 7364 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → (𝑠( linC ‘𝑀)𝑉) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5554eqeq2d 2747 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → ((𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉) ↔ (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉)))
5653, 55anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → ((𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))))
5756rspcev 3581 . . . . . . . . . . . . . . 15 (((𝑦f (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ ((𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
5827, 36, 52, 57syl12anc 835 . . . . . . . . . . . . . 14 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
5958exp41 435 . . . . . . . . . . . . 13 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6059rexlimiva 3144 . . . . . . . . . . . 12 (∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → ((𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6160expd 416 . . . . . . . . . . 11 (∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → (𝐶 ∈ (Base‘𝑀) → (𝐷 ∈ (Base‘𝑀) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))))
6261impcom 408 . . . . . . . . . 10 ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → (𝐷 ∈ (Base‘𝑀) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6362com13 88 . . . . . . . . 9 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐷 ∈ (Base‘𝑀) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6463rexlimiva 3144 . . . . . . . 8 (∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐷 ∈ (Base‘𝑀) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6564impcom 408 . . . . . . 7 ((𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
6665impcom 408 . . . . . 6 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))
6766impcom 408 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
681, 2, 3lcoval 46483 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐶 + 𝐷) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
6968adantr 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → ((𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐶 + 𝐷) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
7014, 67, 69mpbir2and 711 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))
7170ex 413 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉)))
726, 71sylbid 239 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉)))
7372imp 407 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073  𝒫 cpw 4560   class class class wbr 5105  cfv 6496  (class class class)co 7357  f cof 7615  m cmap 8765   finSupp cfsupp 9305  Basecbs 17083  +gcplusg 17133  Scalarcsca 17136  0gc0g 17321  Mndcmnd 18556  LModclmod 20322   linC clinc 46475   LinCo clinco 46476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-linc 46477  df-lco 46478
This theorem is referenced by:  lincsumscmcl  46504
  Copyright terms: Public domain W3C validator