Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincsumcl Structured version   Visualization version   GIF version

Theorem lincsumcl 45660
Description: The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypothesis
Ref Expression
lincsumcl.b + = (+g𝑀)
Assertion
Ref Expression
lincsumcl (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))

Proof of Theorem lincsumcl
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2738 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
3 eqid 2738 . . . . 5 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
41, 2, 3lcoval 45641 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)))))
51, 2, 3lcoval 45641 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐷 ∈ (𝑀 LinCo 𝑉) ↔ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))))
64, 5anbi12d 630 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) ↔ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))))
7 simpll 763 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝑀 ∈ LMod)
8 simpll 763 . . . . . . 7 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝐶 ∈ (Base‘𝑀))
98adantl 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝐶 ∈ (Base‘𝑀))
10 simprl 767 . . . . . . 7 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝐷 ∈ (Base‘𝑀))
1110adantl 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝐷 ∈ (Base‘𝑀))
12 lincsumcl.b . . . . . . 7 + = (+g𝑀)
131, 12lmodvacl 20052 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → (𝐶 + 𝐷) ∈ (Base‘𝑀))
147, 9, 11, 13syl3anc 1369 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → (𝐶 + 𝐷) ∈ (Base‘𝑀))
152lmodfgrp 20047 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Grp)
1615grpmndd 18504 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Mnd)
1716adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Scalar‘𝑀) ∈ Mnd)
1817adantl 481 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (Scalar‘𝑀) ∈ Mnd)
19 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
2019adantl 481 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
21 simpll 763 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → 𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
22 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
2321, 22anim12i 612 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)))
2423adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)))
25 eqid 2738 . . . . . . . . . . . . . . . . 17 (+g‘(Scalar‘𝑀)) = (+g‘(Scalar‘𝑀))
263, 25ofaddmndmap 45567 . . . . . . . . . . . . . . . 16 (((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
2718, 20, 24, 26syl3anc 1369 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
2816anim1i 614 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
2928adantl 481 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
30 simprl 767 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → 𝑦 finSupp (0g‘(Scalar‘𝑀)))
3130adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → 𝑦 finSupp (0g‘(Scalar‘𝑀)))
32 simprl 767 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → 𝑥 finSupp (0g‘(Scalar‘𝑀)))
3331, 32anim12i 612 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀))))
3433adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀))))
353mndpfsupp 45600 . . . . . . . . . . . . . . . 16 ((((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀)))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)))
3629, 24, 34, 35syl3anc 1369 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)))
37 oveq12 7264 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐶 = (𝑦( linC ‘𝑀)𝑉) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
3837expcom 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐷 = (𝑥( linC ‘𝑀)𝑉) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
3938adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4039adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4140com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 = (𝑦( linC ‘𝑀)𝑉) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4241adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4342adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4443adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4544imp 406 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
4645adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
47 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
48 eqid 2738 . . . . . . . . . . . . . . . . . 18 (𝑦( linC ‘𝑀)𝑉) = (𝑦( linC ‘𝑀)𝑉)
49 eqid 2738 . . . . . . . . . . . . . . . . . 18 (𝑥( linC ‘𝑀)𝑉) = (𝑥( linC ‘𝑀)𝑉)
5012, 48, 49, 2, 3, 25lincsum 45658 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀)))) → ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5147, 24, 34, 50syl3anc 1369 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5246, 51eqtrd 2778 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
53 breq1 5073 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → (𝑠 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀))))
54 oveq1 7262 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → (𝑠( linC ‘𝑀)𝑉) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5554eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → ((𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉) ↔ (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉)))
5653, 55anbi12d 630 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → ((𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))))
5756rspcev 3552 . . . . . . . . . . . . . . 15 (((𝑦f (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ ((𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
5827, 36, 52, 57syl12anc 833 . . . . . . . . . . . . . 14 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
5958exp41 434 . . . . . . . . . . . . 13 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6059rexlimiva 3209 . . . . . . . . . . . 12 (∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → ((𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6160expd 415 . . . . . . . . . . 11 (∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → (𝐶 ∈ (Base‘𝑀) → (𝐷 ∈ (Base‘𝑀) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))))
6261impcom 407 . . . . . . . . . 10 ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → (𝐷 ∈ (Base‘𝑀) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6362com13 88 . . . . . . . . 9 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐷 ∈ (Base‘𝑀) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6463rexlimiva 3209 . . . . . . . 8 (∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐷 ∈ (Base‘𝑀) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6564impcom 407 . . . . . . 7 ((𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
6665impcom 407 . . . . . 6 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))
6766impcom 407 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
681, 2, 3lcoval 45641 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐶 + 𝐷) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
6968adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → ((𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐶 + 𝐷) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
7014, 67, 69mpbir2and 709 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))
7170ex 412 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉)))
726, 71sylbid 239 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉)))
7372imp 406 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  𝒫 cpw 4530   class class class wbr 5070  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573   finSupp cfsupp 9058  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891  0gc0g 17067  Mndcmnd 18300  LModclmod 20038   linC clinc 45633   LinCo clinco 45634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-linc 45635  df-lco 45636
This theorem is referenced by:  lincsumscmcl  45662
  Copyright terms: Public domain W3C validator