MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imadifssran Structured version   Visualization version   GIF version

Theorem f1imadifssran 6572
Description: Condition for the range of a one-to-one function to be the range of one its restrictions. Variant of imadifssran 6103. (Contributed by AV, 4-Oct-2025.)
Assertion
Ref Expression
f1imadifssran (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))

Proof of Theorem f1imadifssran
StepHypRef Expression
1 imadmrn 6023 . . . 4 (𝐹 “ dom 𝐹) = ran 𝐹
2 imadif 6570 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (dom 𝐹𝐴)) = ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)))
32sseq1d 3962 . . . . . 6 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) ↔ ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴)))
4 ssundif 4437 . . . . . . 7 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) ↔ ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴))
5 unidm 4106 . . . . . . . . 9 ((𝐹𝐴) ∪ (𝐹𝐴)) = (𝐹𝐴)
65sseq2i 3960 . . . . . . . 8 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) ↔ (𝐹 “ dom 𝐹) ⊆ (𝐹𝐴))
7 id 22 . . . . . . . . 9 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) ⊆ (𝐹𝐴))
8 imassrn 6024 . . . . . . . . . . 11 (𝐹𝐴) ⊆ ran 𝐹
98, 1sseqtrri 3980 . . . . . . . . . 10 (𝐹𝐴) ⊆ (𝐹 “ dom 𝐹)
109a1i 11 . . . . . . . . 9 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹𝐴) ⊆ (𝐹 “ dom 𝐹))
117, 10eqssd 3948 . . . . . . . 8 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
126, 11sylbi 217 . . . . . . 7 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
134, 12sylbir 235 . . . . . 6 (((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
143, 13biimtrdi 253 . . . . 5 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴)))
1514imp 406 . . . 4 ((Fun 𝐹 ∧ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴)) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
161, 15eqtr3id 2782 . . 3 ((Fun 𝐹 ∧ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴)) → ran 𝐹 = (𝐹𝐴))
1716ex 412 . 2 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) → ran 𝐹 = (𝐹𝐴)))
18 df-ima 5632 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
1918eqcomi 2742 . . 3 ran (𝐹𝐴) = (𝐹𝐴)
2019sseq2i 3960 . 2 ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) ↔ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴))
2119eqeq2i 2746 . 2 (ran 𝐹 = ran (𝐹𝐴) ↔ ran 𝐹 = (𝐹𝐴))
2217, 20, 213imtr4g 296 1 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  cdif 3895  cun 3896  wss 3898  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Fun wfun 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator