MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imadifssran Structured version   Visualization version   GIF version

Theorem f1imadifssran 6633
Description: Condition for the range of a one-to-one function to be the range of one its restrictions. Variant of imadifssran 6153. (Contributed by AV, 4-Oct-2025.)
Assertion
Ref Expression
f1imadifssran (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))

Proof of Theorem f1imadifssran
StepHypRef Expression
1 imadmrn 6070 . . . 4 (𝐹 “ dom 𝐹) = ran 𝐹
2 imadif 6631 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (dom 𝐹𝐴)) = ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)))
32sseq1d 3997 . . . . . 6 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) ↔ ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴)))
4 ssundif 4470 . . . . . . 7 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) ↔ ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴))
5 unidm 4139 . . . . . . . . 9 ((𝐹𝐴) ∪ (𝐹𝐴)) = (𝐹𝐴)
65sseq2i 3995 . . . . . . . 8 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) ↔ (𝐹 “ dom 𝐹) ⊆ (𝐹𝐴))
7 id 22 . . . . . . . . 9 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) ⊆ (𝐹𝐴))
8 imassrn 6071 . . . . . . . . . . 11 (𝐹𝐴) ⊆ ran 𝐹
98, 1sseqtrri 4015 . . . . . . . . . 10 (𝐹𝐴) ⊆ (𝐹 “ dom 𝐹)
109a1i 11 . . . . . . . . 9 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹𝐴) ⊆ (𝐹 “ dom 𝐹))
117, 10eqssd 3983 . . . . . . . 8 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
126, 11sylbi 217 . . . . . . 7 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
134, 12sylbir 235 . . . . . 6 (((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
143, 13biimtrdi 253 . . . . 5 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴)))
1514imp 406 . . . 4 ((Fun 𝐹 ∧ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴)) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
161, 15eqtr3id 2783 . . 3 ((Fun 𝐹 ∧ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴)) → ran 𝐹 = (𝐹𝐴))
1716ex 412 . 2 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) → ran 𝐹 = (𝐹𝐴)))
18 df-ima 5680 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
1918eqcomi 2743 . . 3 ran (𝐹𝐴) = (𝐹𝐴)
2019sseq2i 3995 . 2 ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) ↔ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴))
2119eqeq2i 2747 . 2 (ran 𝐹 = ran (𝐹𝐴) ↔ ran 𝐹 = (𝐹𝐴))
2217, 20, 213imtr4g 296 1 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  cdif 3930  cun 3931  wss 3933  ccnv 5666  dom cdm 5667  ran crn 5668  cres 5669  cima 5670  Fun wfun 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-fun 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator