MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imadifssran Structured version   Visualization version   GIF version

Theorem f1imadifssran 6657
Description: Condition for the range of a one-to-one function to be the range of one its restrictions. Variant of imadifssran 6176. (Contributed by AV, 4-Oct-2025.)
Assertion
Ref Expression
f1imadifssran (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))

Proof of Theorem f1imadifssran
StepHypRef Expression
1 imadmrn 6092 . . . 4 (𝐹 “ dom 𝐹) = ran 𝐹
2 imadif 6655 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (dom 𝐹𝐴)) = ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)))
32sseq1d 4028 . . . . . 6 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) ↔ ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴)))
4 ssundif 4495 . . . . . . 7 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) ↔ ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴))
5 unidm 4168 . . . . . . . . 9 ((𝐹𝐴) ∪ (𝐹𝐴)) = (𝐹𝐴)
65sseq2i 4026 . . . . . . . 8 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) ↔ (𝐹 “ dom 𝐹) ⊆ (𝐹𝐴))
7 id 22 . . . . . . . . 9 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) ⊆ (𝐹𝐴))
8 imassrn 6093 . . . . . . . . . . 11 (𝐹𝐴) ⊆ ran 𝐹
98, 1sseqtrri 4034 . . . . . . . . . 10 (𝐹𝐴) ⊆ (𝐹 “ dom 𝐹)
109a1i 11 . . . . . . . . 9 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹𝐴) ⊆ (𝐹 “ dom 𝐹))
117, 10eqssd 4014 . . . . . . . 8 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
126, 11sylbi 217 . . . . . . 7 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
134, 12sylbir 235 . . . . . 6 (((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
143, 13biimtrdi 253 . . . . 5 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴)))
1514imp 406 . . . 4 ((Fun 𝐹 ∧ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴)) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
161, 15eqtr3id 2790 . . 3 ((Fun 𝐹 ∧ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴)) → ran 𝐹 = (𝐹𝐴))
1716ex 412 . 2 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) → ran 𝐹 = (𝐹𝐴)))
18 df-ima 5703 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
1918eqcomi 2745 . . 3 ran (𝐹𝐴) = (𝐹𝐴)
2019sseq2i 4026 . 2 ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) ↔ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴))
2119eqeq2i 2749 . 2 (ran 𝐹 = ran (𝐹𝐴) ↔ ran 𝐹 = (𝐹𝐴))
2217, 20, 213imtr4g 296 1 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1538  cdif 3961  cun 3962  wss 3964  ccnv 5689  dom cdm 5690  ran crn 5691  cres 5692  cima 5693  Fun wfun 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5150  df-opab 5212  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-fun 6568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator