MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imadifssran Structured version   Visualization version   GIF version

Theorem f1imadifssran 6602
Description: Condition for the range of a one-to-one function to be the range of one its restrictions. Variant of imadifssran 6124. (Contributed by AV, 4-Oct-2025.)
Assertion
Ref Expression
f1imadifssran (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))

Proof of Theorem f1imadifssran
StepHypRef Expression
1 imadmrn 6041 . . . 4 (𝐹 “ dom 𝐹) = ran 𝐹
2 imadif 6600 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (dom 𝐹𝐴)) = ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)))
32sseq1d 3978 . . . . . 6 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) ↔ ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴)))
4 ssundif 4451 . . . . . . 7 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) ↔ ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴))
5 unidm 4120 . . . . . . . . 9 ((𝐹𝐴) ∪ (𝐹𝐴)) = (𝐹𝐴)
65sseq2i 3976 . . . . . . . 8 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) ↔ (𝐹 “ dom 𝐹) ⊆ (𝐹𝐴))
7 id 22 . . . . . . . . 9 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) ⊆ (𝐹𝐴))
8 imassrn 6042 . . . . . . . . . . 11 (𝐹𝐴) ⊆ ran 𝐹
98, 1sseqtrri 3996 . . . . . . . . . 10 (𝐹𝐴) ⊆ (𝐹 “ dom 𝐹)
109a1i 11 . . . . . . . . 9 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹𝐴) ⊆ (𝐹 “ dom 𝐹))
117, 10eqssd 3964 . . . . . . . 8 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
126, 11sylbi 217 . . . . . . 7 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
134, 12sylbir 235 . . . . . 6 (((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
143, 13biimtrdi 253 . . . . 5 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴)))
1514imp 406 . . . 4 ((Fun 𝐹 ∧ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴)) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
161, 15eqtr3id 2778 . . 3 ((Fun 𝐹 ∧ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴)) → ran 𝐹 = (𝐹𝐴))
1716ex 412 . 2 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) → ran 𝐹 = (𝐹𝐴)))
18 df-ima 5651 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
1918eqcomi 2738 . . 3 ran (𝐹𝐴) = (𝐹𝐴)
2019sseq2i 3976 . 2 ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) ↔ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴))
2119eqeq2i 2742 . 2 (ran 𝐹 = ran (𝐹𝐴) ↔ ran 𝐹 = (𝐹𝐴))
2217, 20, 213imtr4g 296 1 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cdif 3911  cun 3912  wss 3914  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator