Proof of Theorem f1imadifssran
| Step | Hyp | Ref
| Expression |
| 1 | | imadmrn 6070 |
. . . 4
⊢ (𝐹 “ dom 𝐹) = ran 𝐹 |
| 2 | | imadif 6631 |
. . . . . . 7
⊢ (Fun
◡𝐹 → (𝐹 “ (dom 𝐹 ∖ 𝐴)) = ((𝐹 “ dom 𝐹) ∖ (𝐹 “ 𝐴))) |
| 3 | 2 | sseq1d 3997 |
. . . . . 6
⊢ (Fun
◡𝐹 → ((𝐹 “ (dom 𝐹 ∖ 𝐴)) ⊆ (𝐹 “ 𝐴) ↔ ((𝐹 “ dom 𝐹) ∖ (𝐹 “ 𝐴)) ⊆ (𝐹 “ 𝐴))) |
| 4 | | ssundif 4470 |
. . . . . . 7
⊢ ((𝐹 “ dom 𝐹) ⊆ ((𝐹 “ 𝐴) ∪ (𝐹 “ 𝐴)) ↔ ((𝐹 “ dom 𝐹) ∖ (𝐹 “ 𝐴)) ⊆ (𝐹 “ 𝐴)) |
| 5 | | unidm 4139 |
. . . . . . . . 9
⊢ ((𝐹 “ 𝐴) ∪ (𝐹 “ 𝐴)) = (𝐹 “ 𝐴) |
| 6 | 5 | sseq2i 3995 |
. . . . . . . 8
⊢ ((𝐹 “ dom 𝐹) ⊆ ((𝐹 “ 𝐴) ∪ (𝐹 “ 𝐴)) ↔ (𝐹 “ dom 𝐹) ⊆ (𝐹 “ 𝐴)) |
| 7 | | id 22 |
. . . . . . . . 9
⊢ ((𝐹 “ dom 𝐹) ⊆ (𝐹 “ 𝐴) → (𝐹 “ dom 𝐹) ⊆ (𝐹 “ 𝐴)) |
| 8 | | imassrn 6071 |
. . . . . . . . . . 11
⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 |
| 9 | 8, 1 | sseqtrri 4015 |
. . . . . . . . . 10
⊢ (𝐹 “ 𝐴) ⊆ (𝐹 “ dom 𝐹) |
| 10 | 9 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐹 “ dom 𝐹) ⊆ (𝐹 “ 𝐴) → (𝐹 “ 𝐴) ⊆ (𝐹 “ dom 𝐹)) |
| 11 | 7, 10 | eqssd 3983 |
. . . . . . . 8
⊢ ((𝐹 “ dom 𝐹) ⊆ (𝐹 “ 𝐴) → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
| 12 | 6, 11 | sylbi 217 |
. . . . . . 7
⊢ ((𝐹 “ dom 𝐹) ⊆ ((𝐹 “ 𝐴) ∪ (𝐹 “ 𝐴)) → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
| 13 | 4, 12 | sylbir 235 |
. . . . . 6
⊢ (((𝐹 “ dom 𝐹) ∖ (𝐹 “ 𝐴)) ⊆ (𝐹 “ 𝐴) → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
| 14 | 3, 13 | biimtrdi 253 |
. . . . 5
⊢ (Fun
◡𝐹 → ((𝐹 “ (dom 𝐹 ∖ 𝐴)) ⊆ (𝐹 “ 𝐴) → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴))) |
| 15 | 14 | imp 406 |
. . . 4
⊢ ((Fun
◡𝐹 ∧ (𝐹 “ (dom 𝐹 ∖ 𝐴)) ⊆ (𝐹 “ 𝐴)) → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
| 16 | 1, 15 | eqtr3id 2783 |
. . 3
⊢ ((Fun
◡𝐹 ∧ (𝐹 “ (dom 𝐹 ∖ 𝐴)) ⊆ (𝐹 “ 𝐴)) → ran 𝐹 = (𝐹 “ 𝐴)) |
| 17 | 16 | ex 412 |
. 2
⊢ (Fun
◡𝐹 → ((𝐹 “ (dom 𝐹 ∖ 𝐴)) ⊆ (𝐹 “ 𝐴) → ran 𝐹 = (𝐹 “ 𝐴))) |
| 18 | | df-ima 5680 |
. . . 4
⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) |
| 19 | 18 | eqcomi 2743 |
. . 3
⊢ ran
(𝐹 ↾ 𝐴) = (𝐹 “ 𝐴) |
| 20 | 19 | sseq2i 3995 |
. 2
⊢ ((𝐹 “ (dom 𝐹 ∖ 𝐴)) ⊆ ran (𝐹 ↾ 𝐴) ↔ (𝐹 “ (dom 𝐹 ∖ 𝐴)) ⊆ (𝐹 “ 𝐴)) |
| 21 | 19 | eqeq2i 2747 |
. 2
⊢ (ran
𝐹 = ran (𝐹 ↾ 𝐴) ↔ ran 𝐹 = (𝐹 “ 𝐴)) |
| 22 | 17, 20, 21 | 3imtr4g 296 |
1
⊢ (Fun
◡𝐹 → ((𝐹 “ (dom 𝐹 ∖ 𝐴)) ⊆ ran (𝐹 ↾ 𝐴) → ran 𝐹 = ran (𝐹 ↾ 𝐴))) |