MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1imadifssran Structured version   Visualization version   GIF version

Theorem f1imadifssran 6610
Description: Condition for the range of a one-to-one function to be the range of one its restrictions. Variant of imadifssran 6132. (Contributed by AV, 4-Oct-2025.)
Assertion
Ref Expression
f1imadifssran (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))

Proof of Theorem f1imadifssran
StepHypRef Expression
1 imadmrn 6049 . . . 4 (𝐹 “ dom 𝐹) = ran 𝐹
2 imadif 6608 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (dom 𝐹𝐴)) = ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)))
32sseq1d 3986 . . . . . 6 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) ↔ ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴)))
4 ssundif 4459 . . . . . . 7 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) ↔ ((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴))
5 unidm 4128 . . . . . . . . 9 ((𝐹𝐴) ∪ (𝐹𝐴)) = (𝐹𝐴)
65sseq2i 3984 . . . . . . . 8 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) ↔ (𝐹 “ dom 𝐹) ⊆ (𝐹𝐴))
7 id 22 . . . . . . . . 9 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) ⊆ (𝐹𝐴))
8 imassrn 6050 . . . . . . . . . . 11 (𝐹𝐴) ⊆ ran 𝐹
98, 1sseqtrri 4004 . . . . . . . . . 10 (𝐹𝐴) ⊆ (𝐹 “ dom 𝐹)
109a1i 11 . . . . . . . . 9 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹𝐴) ⊆ (𝐹 “ dom 𝐹))
117, 10eqssd 3972 . . . . . . . 8 ((𝐹 “ dom 𝐹) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
126, 11sylbi 217 . . . . . . 7 ((𝐹 “ dom 𝐹) ⊆ ((𝐹𝐴) ∪ (𝐹𝐴)) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
134, 12sylbir 235 . . . . . 6 (((𝐹 “ dom 𝐹) ∖ (𝐹𝐴)) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
143, 13biimtrdi 253 . . . . 5 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) → (𝐹 “ dom 𝐹) = (𝐹𝐴)))
1514imp 406 . . . 4 ((Fun 𝐹 ∧ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴)) → (𝐹 “ dom 𝐹) = (𝐹𝐴))
161, 15eqtr3id 2779 . . 3 ((Fun 𝐹 ∧ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴)) → ran 𝐹 = (𝐹𝐴))
1716ex 412 . 2 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴) → ran 𝐹 = (𝐹𝐴)))
18 df-ima 5659 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
1918eqcomi 2739 . . 3 ran (𝐹𝐴) = (𝐹𝐴)
2019sseq2i 3984 . 2 ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) ↔ (𝐹 “ (dom 𝐹𝐴)) ⊆ (𝐹𝐴))
2119eqeq2i 2743 . 2 (ran 𝐹 = ran (𝐹𝐴) ↔ ran 𝐹 = (𝐹𝐴))
2217, 20, 213imtr4g 296 1 (Fun 𝐹 → ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cdif 3919  cun 3920  wss 3922  ccnv 5645  dom cdm 5646  ran crn 5647  cres 5648  cima 5649  Fun wfun 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-fun 6521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator