MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth0 Structured version   Visualization version   GIF version

Theorem eupth0 30234
Description: There is an Eulerian path on an empty graph, i.e. a graph with at least one vertex, but without an edge. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 5-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
eupth0.v 𝑉 = (Vtx‘𝐺)
eupth0.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
eupth0 ((𝐴𝑉𝐼 = ∅) → ∅(EulerPaths‘𝐺){⟨0, 𝐴⟩})

Proof of Theorem eupth0
StepHypRef Expression
1 eqidd 2737 . . . 4 (𝐴𝑉 → {⟨0, 𝐴⟩} = {⟨0, 𝐴⟩})
2 eupth0.v . . . . 5 𝑉 = (Vtx‘𝐺)
32is0wlk 30137 . . . 4 (({⟨0, 𝐴⟩} = {⟨0, 𝐴⟩} ∧ 𝐴𝑉) → ∅(Walks‘𝐺){⟨0, 𝐴⟩})
41, 3mpancom 688 . . 3 (𝐴𝑉 → ∅(Walks‘𝐺){⟨0, 𝐴⟩})
5 f1o0 6884 . . . 4 ∅:∅–1-1-onto→∅
6 eqidd 2737 . . . . 5 (𝐼 = ∅ → ∅ = ∅)
7 hash0 14407 . . . . . . . 8 (♯‘∅) = 0
87oveq2i 7443 . . . . . . 7 (0..^(♯‘∅)) = (0..^0)
9 fzo0 13724 . . . . . . 7 (0..^0) = ∅
108, 9eqtri 2764 . . . . . 6 (0..^(♯‘∅)) = ∅
1110a1i 11 . . . . 5 (𝐼 = ∅ → (0..^(♯‘∅)) = ∅)
12 dmeq 5913 . . . . . 6 (𝐼 = ∅ → dom 𝐼 = dom ∅)
13 dm0 5930 . . . . . 6 dom ∅ = ∅
1412, 13eqtrdi 2792 . . . . 5 (𝐼 = ∅ → dom 𝐼 = ∅)
156, 11, 14f1oeq123d 6841 . . . 4 (𝐼 = ∅ → (∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼 ↔ ∅:∅–1-1-onto→∅))
165, 15mpbiri 258 . . 3 (𝐼 = ∅ → ∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼)
174, 16anim12i 613 . 2 ((𝐴𝑉𝐼 = ∅) → (∅(Walks‘𝐺){⟨0, 𝐴⟩} ∧ ∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼))
18 eupth0.i . . 3 𝐼 = (iEdg‘𝐺)
1918iseupthf1o 30222 . 2 (∅(EulerPaths‘𝐺){⟨0, 𝐴⟩} ↔ (∅(Walks‘𝐺){⟨0, 𝐴⟩} ∧ ∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼))
2017, 19sylibr 234 1 ((𝐴𝑉𝐼 = ∅) → ∅(EulerPaths‘𝐺){⟨0, 𝐴⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  c0 4332  {csn 4625  cop 4631   class class class wbr 5142  dom cdm 5684  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  0cc0 11156  ..^cfzo 13695  chash 14370  Vtxcvtx 29014  iEdgciedg 29015  Walkscwlks 29615  EulerPathsceupth 30217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-wlks 29618  df-trls 29711  df-eupth 30218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator