Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth0 Structured version   Visualization version   GIF version

Theorem eupth0 27617
 Description: There is an Eulerian path on an empty graph, i.e. a graph with at least one vertex, but without an edge. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 5-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
eupth0.v 𝑉 = (Vtx‘𝐺)
eupth0.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
eupth0 ((𝐴𝑉𝐼 = ∅) → ∅(EulerPaths‘𝐺){⟨0, 𝐴⟩})

Proof of Theorem eupth0
StepHypRef Expression
1 eqidd 2778 . . . 4 (𝐴𝑉 → {⟨0, 𝐴⟩} = {⟨0, 𝐴⟩})
2 eupth0.v . . . . 5 𝑉 = (Vtx‘𝐺)
32is0wlk 27520 . . . 4 (({⟨0, 𝐴⟩} = {⟨0, 𝐴⟩} ∧ 𝐴𝑉) → ∅(Walks‘𝐺){⟨0, 𝐴⟩})
41, 3mpancom 678 . . 3 (𝐴𝑉 → ∅(Walks‘𝐺){⟨0, 𝐴⟩})
5 f1o0 6427 . . . 4 ∅:∅–1-1-onto→∅
6 eqidd 2778 . . . . 5 (𝐼 = ∅ → ∅ = ∅)
7 hash0 13473 . . . . . . . 8 (♯‘∅) = 0
87oveq2i 6933 . . . . . . 7 (0..^(♯‘∅)) = (0..^0)
9 fzo0 12811 . . . . . . 7 (0..^0) = ∅
108, 9eqtri 2801 . . . . . 6 (0..^(♯‘∅)) = ∅
1110a1i 11 . . . . 5 (𝐼 = ∅ → (0..^(♯‘∅)) = ∅)
12 dmeq 5569 . . . . . 6 (𝐼 = ∅ → dom 𝐼 = dom ∅)
13 dm0 5584 . . . . . 6 dom ∅ = ∅
1412, 13syl6eq 2829 . . . . 5 (𝐼 = ∅ → dom 𝐼 = ∅)
156, 11, 14f1oeq123d 6386 . . . 4 (𝐼 = ∅ → (∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼 ↔ ∅:∅–1-1-onto→∅))
165, 15mpbiri 250 . . 3 (𝐼 = ∅ → ∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼)
174, 16anim12i 606 . 2 ((𝐴𝑉𝐼 = ∅) → (∅(Walks‘𝐺){⟨0, 𝐴⟩} ∧ ∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼))
18 eupth0.i . . 3 𝐼 = (iEdg‘𝐺)
1918iseupthf1o 27605 . 2 (∅(EulerPaths‘𝐺){⟨0, 𝐴⟩} ↔ (∅(Walks‘𝐺){⟨0, 𝐴⟩} ∧ ∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼))
2017, 19sylibr 226 1 ((𝐴𝑉𝐼 = ∅) → ∅(EulerPaths‘𝐺){⟨0, 𝐴⟩})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1601   ∈ wcel 2106  ∅c0 4140  {csn 4397  ⟨cop 4403   class class class wbr 4886  dom cdm 5355  –1-1-onto→wf1o 6134  ‘cfv 6135  (class class class)co 6922  0cc0 10272  ..^cfzo 12784  ♯chash 13435  Vtxcvtx 26344  iEdgciedg 26345  Walkscwlks 26944  EulerPathsceupth 27600 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-ifp 1047  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-hash 13436  df-word 13600  df-wlks 26947  df-trls 27043  df-eupth 27601 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator