| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupth0 | Structured version Visualization version GIF version | ||
| Description: There is an Eulerian path on an empty graph, i.e. a graph with at least one vertex, but without an edge. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 5-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| eupth0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| eupth0.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| eupth0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 = ∅) → ∅(EulerPaths‘𝐺){〈0, 𝐴〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2734 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {〈0, 𝐴〉} = {〈0, 𝐴〉}) | |
| 2 | eupth0.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | is0wlk 30099 | . . . 4 ⊢ (({〈0, 𝐴〉} = {〈0, 𝐴〉} ∧ 𝐴 ∈ 𝑉) → ∅(Walks‘𝐺){〈0, 𝐴〉}) |
| 4 | 1, 3 | mpancom 688 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∅(Walks‘𝐺){〈0, 𝐴〉}) |
| 5 | f1o0 6805 | . . . 4 ⊢ ∅:∅–1-1-onto→∅ | |
| 6 | eqidd 2734 | . . . . 5 ⊢ (𝐼 = ∅ → ∅ = ∅) | |
| 7 | hash0 14276 | . . . . . . . 8 ⊢ (♯‘∅) = 0 | |
| 8 | 7 | oveq2i 7363 | . . . . . . 7 ⊢ (0..^(♯‘∅)) = (0..^0) |
| 9 | fzo0 13585 | . . . . . . 7 ⊢ (0..^0) = ∅ | |
| 10 | 8, 9 | eqtri 2756 | . . . . . 6 ⊢ (0..^(♯‘∅)) = ∅ |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐼 = ∅ → (0..^(♯‘∅)) = ∅) |
| 12 | dmeq 5847 | . . . . . 6 ⊢ (𝐼 = ∅ → dom 𝐼 = dom ∅) | |
| 13 | dm0 5864 | . . . . . 6 ⊢ dom ∅ = ∅ | |
| 14 | 12, 13 | eqtrdi 2784 | . . . . 5 ⊢ (𝐼 = ∅ → dom 𝐼 = ∅) |
| 15 | 6, 11, 14 | f1oeq123d 6762 | . . . 4 ⊢ (𝐼 = ∅ → (∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼 ↔ ∅:∅–1-1-onto→∅)) |
| 16 | 5, 15 | mpbiri 258 | . . 3 ⊢ (𝐼 = ∅ → ∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼) |
| 17 | 4, 16 | anim12i 613 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 = ∅) → (∅(Walks‘𝐺){〈0, 𝐴〉} ∧ ∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼)) |
| 18 | eupth0.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 19 | 18 | iseupthf1o 30184 | . 2 ⊢ (∅(EulerPaths‘𝐺){〈0, 𝐴〉} ↔ (∅(Walks‘𝐺){〈0, 𝐴〉} ∧ ∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼)) |
| 20 | 17, 19 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 = ∅) → ∅(EulerPaths‘𝐺){〈0, 𝐴〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∅c0 4282 {csn 4575 〈cop 4581 class class class wbr 5093 dom cdm 5619 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 0cc0 11013 ..^cfzo 13556 ♯chash 14239 Vtxcvtx 28976 iEdgciedg 28977 Walkscwlks 29577 EulerPathsceupth 30179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-wlks 29580 df-trls 29671 df-eupth 30180 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |