![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1resveqaeq | Structured version Visualization version GIF version |
Description: If a function restricted to a class is one-to-one, then for any two elements of the class, the values of the function at those elements are equal only if the two elements are the same element. (Contributed by BTernaryTau, 27-Sep-2023.) |
Ref | Expression |
---|---|
f1resveqaeq | ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 6925 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐶) = (𝐹‘𝐶)) | |
2 | 1 | ad2antrl 728 | . . 3 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐶) = (𝐹‘𝐶)) |
3 | fvres 6925 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐷) = (𝐹‘𝐷)) | |
4 | 3 | ad2antll 729 | . . 3 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐷) = (𝐹‘𝐷)) |
5 | 2, 4 | eqeq12d 2750 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝐶) = ((𝐹 ↾ 𝐴)‘𝐷) ↔ (𝐹‘𝐶) = (𝐹‘𝐷))) |
6 | f1veqaeq 7276 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝐶) = ((𝐹 ↾ 𝐴)‘𝐷) → 𝐶 = 𝐷)) | |
7 | 5, 6 | sylbird 260 | 1 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ↾ cres 5690 –1-1→wf1 6559 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-res 5700 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fv 6570 |
This theorem is referenced by: f1resrcmplf1d 35079 |
Copyright terms: Public domain | W3C validator |