| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1resveqaeq | Structured version Visualization version GIF version | ||
| Description: If a function restricted to a class is one-to-one, then for any two elements of the class, the values of the function at those elements are equal only if the two elements are the same element. (Contributed by BTernaryTau, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| f1resveqaeq | ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres 6925 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐶) = (𝐹‘𝐶)) | |
| 2 | 1 | ad2antrl 728 | . . 3 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐶) = (𝐹‘𝐶)) |
| 3 | fvres 6925 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐷) = (𝐹‘𝐷)) | |
| 4 | 3 | ad2antll 729 | . . 3 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐷) = (𝐹‘𝐷)) |
| 5 | 2, 4 | eqeq12d 2753 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝐶) = ((𝐹 ↾ 𝐴)‘𝐷) ↔ (𝐹‘𝐶) = (𝐹‘𝐷))) |
| 6 | f1veqaeq 7277 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝐶) = ((𝐹 ↾ 𝐴)‘𝐷) → 𝐶 = 𝐷)) | |
| 7 | 5, 6 | sylbird 260 | 1 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ↾ cres 5687 –1-1→wf1 6558 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-res 5697 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fv 6569 |
| This theorem is referenced by: f1resrcmplf1d 35101 |
| Copyright terms: Public domain | W3C validator |