Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1resveqaeq Structured version   Visualization version   GIF version

Theorem f1resveqaeq 33192
Description: If a function restricted to a class is one-to-one, then for any two elements of the class, the values of the function at those elements are equal only if the two elements are the same element. (Contributed by BTernaryTau, 27-Sep-2023.)
Assertion
Ref Expression
f1resveqaeq (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))

Proof of Theorem f1resveqaeq
StepHypRef Expression
1 fvres 6830 . . . 4 (𝐶𝐴 → ((𝐹𝐴)‘𝐶) = (𝐹𝐶))
21ad2antrl 725 . . 3 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐴)‘𝐶) = (𝐹𝐶))
3 fvres 6830 . . . 4 (𝐷𝐴 → ((𝐹𝐴)‘𝐷) = (𝐹𝐷))
43ad2antll 726 . . 3 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐴)‘𝐷) = (𝐹𝐷))
52, 4eqeq12d 2752 . 2 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (((𝐹𝐴)‘𝐶) = ((𝐹𝐴)‘𝐷) ↔ (𝐹𝐶) = (𝐹𝐷)))
6 f1veqaeq 7169 . 2 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (((𝐹𝐴)‘𝐶) = ((𝐹𝐴)‘𝐷) → 𝐶 = 𝐷))
75, 6sylbird 259 1 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cres 5609  1-1wf1 6462  cfv 6465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-res 5619  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fv 6473
This theorem is referenced by:  f1resrcmplf1d  33194
  Copyright terms: Public domain W3C validator