Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1resveqaeq Structured version   Visualization version   GIF version

Theorem f1resveqaeq 34859
Description: If a function restricted to a class is one-to-one, then for any two elements of the class, the values of the function at those elements are equal only if the two elements are the same element. (Contributed by BTernaryTau, 27-Sep-2023.)
Assertion
Ref Expression
f1resveqaeq (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))

Proof of Theorem f1resveqaeq
StepHypRef Expression
1 fvres 6915 . . . 4 (𝐶𝐴 → ((𝐹𝐴)‘𝐶) = (𝐹𝐶))
21ad2antrl 726 . . 3 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐴)‘𝐶) = (𝐹𝐶))
3 fvres 6915 . . . 4 (𝐷𝐴 → ((𝐹𝐴)‘𝐷) = (𝐹𝐷))
43ad2antll 727 . . 3 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐴)‘𝐷) = (𝐹𝐷))
52, 4eqeq12d 2741 . 2 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (((𝐹𝐴)‘𝐶) = ((𝐹𝐴)‘𝐷) ↔ (𝐹𝐶) = (𝐹𝐷)))
6 f1veqaeq 7267 . 2 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (((𝐹𝐴)‘𝐶) = ((𝐹𝐴)‘𝐷) → 𝐶 = 𝐷))
75, 6sylbird 259 1 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cres 5680  1-1wf1 6546  cfv 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-res 5690  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fv 6557
This theorem is referenced by:  f1resrcmplf1d  34861
  Copyright terms: Public domain W3C validator