Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1resveqaeq Structured version   Visualization version   GIF version

Theorem f1resveqaeq 35062
Description: If a function restricted to a class is one-to-one, then for any two elements of the class, the values of the function at those elements are equal only if the two elements are the same element. (Contributed by BTernaryTau, 27-Sep-2023.)
Assertion
Ref Expression
f1resveqaeq (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))

Proof of Theorem f1resveqaeq
StepHypRef Expression
1 fvres 6894 . . . 4 (𝐶𝐴 → ((𝐹𝐴)‘𝐶) = (𝐹𝐶))
21ad2antrl 728 . . 3 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐴)‘𝐶) = (𝐹𝐶))
3 fvres 6894 . . . 4 (𝐷𝐴 → ((𝐹𝐴)‘𝐷) = (𝐹𝐷))
43ad2antll 729 . . 3 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐴)‘𝐷) = (𝐹𝐷))
52, 4eqeq12d 2751 . 2 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (((𝐹𝐴)‘𝐶) = ((𝐹𝐴)‘𝐷) ↔ (𝐹𝐶) = (𝐹𝐷)))
6 f1veqaeq 7248 . 2 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (((𝐹𝐴)‘𝐶) = ((𝐹𝐴)‘𝐷) → 𝐶 = 𝐷))
75, 6sylbird 260 1 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cres 5656  1-1wf1 6527  cfv 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-res 5666  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fv 6538
This theorem is referenced by:  f1resrcmplf1d  35064
  Copyright terms: Public domain W3C validator