Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1resveqaeq Structured version   Visualization version   GIF version

Theorem f1resveqaeq 35068
Description: If a function restricted to a class is one-to-one, then for any two elements of the class, the values of the function at those elements are equal only if the two elements are the same element. (Contributed by BTernaryTau, 27-Sep-2023.)
Assertion
Ref Expression
f1resveqaeq (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))

Proof of Theorem f1resveqaeq
StepHypRef Expression
1 fvres 6859 . . . 4 (𝐶𝐴 → ((𝐹𝐴)‘𝐶) = (𝐹𝐶))
21ad2antrl 728 . . 3 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐴)‘𝐶) = (𝐹𝐶))
3 fvres 6859 . . . 4 (𝐷𝐴 → ((𝐹𝐴)‘𝐷) = (𝐹𝐷))
43ad2antll 729 . . 3 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐴)‘𝐷) = (𝐹𝐷))
52, 4eqeq12d 2745 . 2 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (((𝐹𝐴)‘𝐶) = ((𝐹𝐴)‘𝐷) ↔ (𝐹𝐶) = (𝐹𝐷)))
6 f1veqaeq 7213 . 2 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → (((𝐹𝐴)‘𝐶) = ((𝐹𝐴)‘𝐷) → 𝐶 = 𝐷))
75, 6sylbird 260 1 (((𝐹𝐴):𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cres 5633  1-1wf1 6496  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fv 6507
This theorem is referenced by:  f1resrcmplf1d  35070
  Copyright terms: Public domain W3C validator