| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1resveqaeq | Structured version Visualization version GIF version | ||
| Description: If a function restricted to a class is one-to-one, then for any two elements of the class, the values of the function at those elements are equal only if the two elements are the same element. (Contributed by BTernaryTau, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| f1resveqaeq | ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres 6850 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐶) = (𝐹‘𝐶)) | |
| 2 | 1 | ad2antrl 728 | . . 3 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐶) = (𝐹‘𝐶)) |
| 3 | fvres 6850 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐷) = (𝐹‘𝐷)) | |
| 4 | 3 | ad2antll 729 | . . 3 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐷) = (𝐹‘𝐷)) |
| 5 | 2, 4 | eqeq12d 2749 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝐶) = ((𝐹 ↾ 𝐴)‘𝐷) ↔ (𝐹‘𝐶) = (𝐹‘𝐷))) |
| 6 | f1veqaeq 7199 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝐶) = ((𝐹 ↾ 𝐴)‘𝐷) → 𝐶 = 𝐷)) | |
| 7 | 5, 6 | sylbird 260 | 1 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ↾ cres 5623 –1-1→wf1 6486 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-res 5633 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fv 6497 |
| This theorem is referenced by: f1resrcmplf1d 35110 |
| Copyright terms: Public domain | W3C validator |