Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1resveqaeq | Structured version Visualization version GIF version |
Description: If a function restricted to a class is one-to-one, then for any two elements of the class, the values of the function at those elements are equal only if the two elements are the same element. (Contributed by BTernaryTau, 27-Sep-2023.) |
Ref | Expression |
---|---|
f1resveqaeq | ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 6830 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐶) = (𝐹‘𝐶)) | |
2 | 1 | ad2antrl 725 | . . 3 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐶) = (𝐹‘𝐶)) |
3 | fvres 6830 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐷) = (𝐹‘𝐷)) | |
4 | 3 | ad2antll 726 | . . 3 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐷) = (𝐹‘𝐷)) |
5 | 2, 4 | eqeq12d 2752 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝐶) = ((𝐹 ↾ 𝐴)‘𝐷) ↔ (𝐹‘𝐶) = (𝐹‘𝐷))) |
6 | f1veqaeq 7169 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝐶) = ((𝐹 ↾ 𝐴)‘𝐷) → 𝐶 = 𝐷)) | |
7 | 5, 6 | sylbird 259 | 1 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ↾ cres 5609 –1-1→wf1 6462 ‘cfv 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-res 5619 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fv 6473 |
This theorem is referenced by: f1resrcmplf1d 33194 |
Copyright terms: Public domain | W3C validator |