![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1resveqaeq | Structured version Visualization version GIF version |
Description: If a function restricted to a class is one-to-one, then for any two elements of the class, the values of the function at those elements are equal only if the two elements are the same element. (Contributed by BTernaryTau, 27-Sep-2023.) |
Ref | Expression |
---|---|
f1resveqaeq | ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 6911 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐶) = (𝐹‘𝐶)) | |
2 | 1 | ad2antrl 727 | . . 3 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐶) = (𝐹‘𝐶)) |
3 | fvres 6911 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐷) = (𝐹‘𝐷)) | |
4 | 3 | ad2antll 728 | . . 3 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐷) = (𝐹‘𝐷)) |
5 | 2, 4 | eqeq12d 2749 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝐶) = ((𝐹 ↾ 𝐴)‘𝐷) ↔ (𝐹‘𝐶) = (𝐹‘𝐷))) |
6 | f1veqaeq 7256 | . 2 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝐶) = ((𝐹 ↾ 𝐴)‘𝐷) → 𝐶 = 𝐷)) | |
7 | 5, 6 | sylbird 260 | 1 ⊢ (((𝐹 ↾ 𝐴):𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ↾ cres 5679 –1-1→wf1 6541 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-res 5689 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fv 6552 |
This theorem is referenced by: f1resrcmplf1d 34090 |
Copyright terms: Public domain | W3C validator |