Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for fcores 44561. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
Ref | Expression |
---|---|
fcoreslem3 | ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6601 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | fcores.e | . . . 4 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐶)) |
5 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐶)) |
7 | 2, 4, 6 | rescnvimafod 6951 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝑃):𝑃–onto→𝐸) |
8 | fcores.x | . . 3 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
9 | foeq1 6684 | . . 3 ⊢ (𝑋 = (𝐹 ↾ 𝑃) → (𝑋:𝑃–onto→𝐸 ↔ (𝐹 ↾ 𝑃):𝑃–onto→𝐸)) | |
10 | 8, 9 | mp1i 13 | . 2 ⊢ (𝜑 → (𝑋:𝑃–onto→𝐸 ↔ (𝐹 ↾ 𝑃):𝑃–onto→𝐸)) |
11 | 7, 10 | mpbird 256 | 1 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∩ cin 3886 ◡ccnv 5588 ran crn 5590 ↾ cres 5591 “ cima 5592 ⟶wf 6429 –onto→wfo 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 |
This theorem is referenced by: fcoreslem4 44560 fcores 44561 fcoresf1lem 44562 fcoresf1 44563 fcoresfo 44565 fcoresfob 44566 |
Copyright terms: Public domain | W3C validator |