Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoreslem3 Structured version   Visualization version   GIF version

Theorem fcoreslem3 46680
Description: Lemma 3 for fcores 46682. (Contributed by AV, 13-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
Assertion
Ref Expression
fcoreslem3 (𝜑𝑋:𝑃onto𝐸)

Proof of Theorem fcoreslem3
StepHypRef Expression
1 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
21ffnd 6729 . . 3 (𝜑𝐹 Fn 𝐴)
3 fcores.e . . . 4 𝐸 = (ran 𝐹𝐶)
43a1i 11 . . 3 (𝜑𝐸 = (ran 𝐹𝐶))
5 fcores.p . . . 4 𝑃 = (𝐹𝐶)
65a1i 11 . . 3 (𝜑𝑃 = (𝐹𝐶))
72, 4, 6rescnvimafod 7087 . 2 (𝜑 → (𝐹𝑃):𝑃onto𝐸)
8 fcores.x . . 3 𝑋 = (𝐹𝑃)
9 foeq1 6811 . . 3 (𝑋 = (𝐹𝑃) → (𝑋:𝑃onto𝐸 ↔ (𝐹𝑃):𝑃onto𝐸))
108, 9mp1i 13 . 2 (𝜑 → (𝑋:𝑃onto𝐸 ↔ (𝐹𝑃):𝑃onto𝐸))
117, 10mpbird 256 1 (𝜑𝑋:𝑃onto𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  cin 3946  ccnv 5681  ran crn 5683  cres 5684  cima 5685  wf 6550  ontowfo 6552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5154  df-opab 5216  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-fun 6556  df-fn 6557  df-f 6558  df-fo 6560
This theorem is referenced by:  fcoreslem4  46681  fcores  46682  fcoresf1lem  46683  fcoresf1  46684  fcoresfo  46686  fcoresfob  46687
  Copyright terms: Public domain W3C validator