![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for fcores 46682. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
Ref | Expression |
---|---|
fcoreslem3 | ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6729 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | fcores.e | . . . 4 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐶)) |
5 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐶)) |
7 | 2, 4, 6 | rescnvimafod 7087 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝑃):𝑃–onto→𝐸) |
8 | fcores.x | . . 3 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
9 | foeq1 6811 | . . 3 ⊢ (𝑋 = (𝐹 ↾ 𝑃) → (𝑋:𝑃–onto→𝐸 ↔ (𝐹 ↾ 𝑃):𝑃–onto→𝐸)) | |
10 | 8, 9 | mp1i 13 | . 2 ⊢ (𝜑 → (𝑋:𝑃–onto→𝐸 ↔ (𝐹 ↾ 𝑃):𝑃–onto→𝐸)) |
11 | 7, 10 | mpbird 256 | 1 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∩ cin 3946 ◡ccnv 5681 ran crn 5683 ↾ cres 5684 “ cima 5685 ⟶wf 6550 –onto→wfo 6552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-fun 6556 df-fn 6557 df-f 6558 df-fo 6560 |
This theorem is referenced by: fcoreslem4 46681 fcores 46682 fcoresf1lem 46683 fcoresf1 46684 fcoresfo 46686 fcoresfob 46687 |
Copyright terms: Public domain | W3C validator |