| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for fcores 47072. (Contributed by AV, 13-Sep-2024.) |
| Ref | Expression |
|---|---|
| fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
| fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
| fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
| Ref | Expression |
|---|---|
| fcoreslem3 | ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6692 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | fcores.e | . . . 4 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐶)) |
| 5 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐶)) |
| 7 | 2, 4, 6 | rescnvimafod 7048 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝑃):𝑃–onto→𝐸) |
| 8 | fcores.x | . . 3 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
| 9 | foeq1 6771 | . . 3 ⊢ (𝑋 = (𝐹 ↾ 𝑃) → (𝑋:𝑃–onto→𝐸 ↔ (𝐹 ↾ 𝑃):𝑃–onto→𝐸)) | |
| 10 | 8, 9 | mp1i 13 | . 2 ⊢ (𝜑 → (𝑋:𝑃–onto→𝐸 ↔ (𝐹 ↾ 𝑃):𝑃–onto→𝐸)) |
| 11 | 7, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∩ cin 3916 ◡ccnv 5640 ran crn 5642 ↾ cres 5643 “ cima 5644 ⟶wf 6510 –onto→wfo 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 |
| This theorem is referenced by: fcoreslem4 47071 fcores 47072 fcoresf1lem 47073 fcoresf1 47074 fcoresfo 47076 fcoresfob 47077 |
| Copyright terms: Public domain | W3C validator |