![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for fcores 46262. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
Ref | Expression |
---|---|
fcoreslem3 | ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6708 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | fcores.e | . . . 4 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐶)) |
5 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐶)) |
7 | 2, 4, 6 | rescnvimafod 7065 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝑃):𝑃–onto→𝐸) |
8 | fcores.x | . . 3 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
9 | foeq1 6791 | . . 3 ⊢ (𝑋 = (𝐹 ↾ 𝑃) → (𝑋:𝑃–onto→𝐸 ↔ (𝐹 ↾ 𝑃):𝑃–onto→𝐸)) | |
10 | 8, 9 | mp1i 13 | . 2 ⊢ (𝜑 → (𝑋:𝑃–onto→𝐸 ↔ (𝐹 ↾ 𝑃):𝑃–onto→𝐸)) |
11 | 7, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∩ cin 3939 ◡ccnv 5665 ran crn 5667 ↾ cres 5668 “ cima 5669 ⟶wf 6529 –onto→wfo 6531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-fun 6535 df-fn 6536 df-f 6537 df-fo 6539 |
This theorem is referenced by: fcoreslem4 46261 fcores 46262 fcoresf1lem 46263 fcoresf1 46264 fcoresfo 46266 fcoresfob 46267 |
Copyright terms: Public domain | W3C validator |