| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for fcores 47181. (Contributed by AV, 17-Sep-2024.) |
| Ref | Expression |
|---|---|
| fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
| fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
| fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
| fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
| fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
| Ref | Expression |
|---|---|
| fcoreslem4 | ⊢ (𝜑 → (𝑌 ∘ 𝑋) Fn 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
| 2 | 1 | ffnd 6660 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐶) |
| 3 | fcores.e | . . . . . 6 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐶)) |
| 5 | inss2 4189 | . . . . 5 ⊢ (ran 𝐹 ∩ 𝐶) ⊆ 𝐶 | |
| 6 | 4, 5 | eqsstrdi 3976 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ 𝐶) |
| 7 | 2, 6 | fnssresd 6613 | . . 3 ⊢ (𝜑 → (𝐺 ↾ 𝐸) Fn 𝐸) |
| 8 | fcores.y | . . . 4 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
| 9 | 8 | fneq1i 6586 | . . 3 ⊢ (𝑌 Fn 𝐸 ↔ (𝐺 ↾ 𝐸) Fn 𝐸) |
| 10 | 7, 9 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑌 Fn 𝐸) |
| 11 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 12 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
| 13 | fcores.x | . . . 4 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
| 14 | 11, 3, 12, 13 | fcoreslem3 47179 | . . 3 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
| 15 | fofn 6745 | . . 3 ⊢ (𝑋:𝑃–onto→𝐸 → 𝑋 Fn 𝑃) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 Fn 𝑃) |
| 17 | 11, 3, 12, 13 | fcoreslem2 47178 | . . 3 ⊢ (𝜑 → ran 𝑋 = 𝐸) |
| 18 | eqimss 3990 | . . 3 ⊢ (ran 𝑋 = 𝐸 → ran 𝑋 ⊆ 𝐸) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑋 ⊆ 𝐸) |
| 20 | fnco 6607 | . 2 ⊢ ((𝑌 Fn 𝐸 ∧ 𝑋 Fn 𝑃 ∧ ran 𝑋 ⊆ 𝐸) → (𝑌 ∘ 𝑋) Fn 𝑃) | |
| 21 | 10, 16, 19, 20 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑌 ∘ 𝑋) Fn 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3898 ⊆ wss 3899 ◡ccnv 5620 ran crn 5622 ↾ cres 5623 “ cima 5624 ∘ ccom 5625 Fn wfn 6484 ⟶wf 6485 –onto→wfo 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6491 df-fn 6492 df-f 6493 df-fo 6495 |
| This theorem is referenced by: fcores 47181 |
| Copyright terms: Public domain | W3C validator |