Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for fcores 44448. (Contributed by AV, 17-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
Ref | Expression |
---|---|
fcoreslem4 | ⊢ (𝜑 → (𝑌 ∘ 𝑋) Fn 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
2 | 1 | ffnd 6585 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐶) |
3 | fcores.e | . . . . . 6 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐶)) |
5 | inss2 4160 | . . . . 5 ⊢ (ran 𝐹 ∩ 𝐶) ⊆ 𝐶 | |
6 | 4, 5 | eqsstrdi 3971 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ 𝐶) |
7 | 2, 6 | fnssresd 6540 | . . 3 ⊢ (𝜑 → (𝐺 ↾ 𝐸) Fn 𝐸) |
8 | fcores.y | . . . 4 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
9 | 8 | fneq1i 6514 | . . 3 ⊢ (𝑌 Fn 𝐸 ↔ (𝐺 ↾ 𝐸) Fn 𝐸) |
10 | 7, 9 | sylibr 233 | . 2 ⊢ (𝜑 → 𝑌 Fn 𝐸) |
11 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
12 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
13 | fcores.x | . . . 4 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
14 | 11, 3, 12, 13 | fcoreslem3 44446 | . . 3 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
15 | fofn 6674 | . . 3 ⊢ (𝑋:𝑃–onto→𝐸 → 𝑋 Fn 𝑃) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 Fn 𝑃) |
17 | 11, 3, 12, 13 | fcoreslem2 44445 | . . 3 ⊢ (𝜑 → ran 𝑋 = 𝐸) |
18 | eqimss 3973 | . . 3 ⊢ (ran 𝑋 = 𝐸 → ran 𝑋 ⊆ 𝐸) | |
19 | 17, 18 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑋 ⊆ 𝐸) |
20 | fnco 6533 | . 2 ⊢ ((𝑌 Fn 𝐸 ∧ 𝑋 Fn 𝑃 ∧ ran 𝑋 ⊆ 𝐸) → (𝑌 ∘ 𝑋) Fn 𝑃) | |
21 | 10, 16, 19, 20 | syl3anc 1369 | 1 ⊢ (𝜑 → (𝑌 ∘ 𝑋) Fn 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3882 ⊆ wss 3883 ◡ccnv 5579 ran crn 5581 ↾ cres 5582 “ cima 5583 ∘ ccom 5584 Fn wfn 6413 ⟶wf 6414 –onto→wfo 6416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 |
This theorem is referenced by: fcores 44448 |
Copyright terms: Public domain | W3C validator |