![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for fcores 46354. (Contributed by AV, 17-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
Ref | Expression |
---|---|
fcoreslem4 | ⊢ (𝜑 → (𝑌 ∘ 𝑋) Fn 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
2 | 1 | ffnd 6712 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐶) |
3 | fcores.e | . . . . . 6 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐶)) |
5 | inss2 4224 | . . . . 5 ⊢ (ran 𝐹 ∩ 𝐶) ⊆ 𝐶 | |
6 | 4, 5 | eqsstrdi 4031 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ 𝐶) |
7 | 2, 6 | fnssresd 6668 | . . 3 ⊢ (𝜑 → (𝐺 ↾ 𝐸) Fn 𝐸) |
8 | fcores.y | . . . 4 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
9 | 8 | fneq1i 6640 | . . 3 ⊢ (𝑌 Fn 𝐸 ↔ (𝐺 ↾ 𝐸) Fn 𝐸) |
10 | 7, 9 | sylibr 233 | . 2 ⊢ (𝜑 → 𝑌 Fn 𝐸) |
11 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
12 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
13 | fcores.x | . . . 4 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
14 | 11, 3, 12, 13 | fcoreslem3 46352 | . . 3 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
15 | fofn 6801 | . . 3 ⊢ (𝑋:𝑃–onto→𝐸 → 𝑋 Fn 𝑃) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 Fn 𝑃) |
17 | 11, 3, 12, 13 | fcoreslem2 46351 | . . 3 ⊢ (𝜑 → ran 𝑋 = 𝐸) |
18 | eqimss 4035 | . . 3 ⊢ (ran 𝑋 = 𝐸 → ran 𝑋 ⊆ 𝐸) | |
19 | 17, 18 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑋 ⊆ 𝐸) |
20 | fnco 6661 | . 2 ⊢ ((𝑌 Fn 𝐸 ∧ 𝑋 Fn 𝑃 ∧ ran 𝑋 ⊆ 𝐸) → (𝑌 ∘ 𝑋) Fn 𝑃) | |
21 | 10, 16, 19, 20 | syl3anc 1368 | 1 ⊢ (𝜑 → (𝑌 ∘ 𝑋) Fn 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∩ cin 3942 ⊆ wss 3943 ◡ccnv 5668 ran crn 5670 ↾ cres 5671 “ cima 5672 ∘ ccom 5673 Fn wfn 6532 ⟶wf 6533 –onto→wfo 6535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-fun 6539 df-fn 6540 df-f 6541 df-fo 6543 |
This theorem is referenced by: fcores 46354 |
Copyright terms: Public domain | W3C validator |