Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoreslem4 Structured version   Visualization version   GIF version

Theorem fcoreslem4 46353
Description: Lemma 4 for fcores 46354. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcoreslem4 (𝜑 → (𝑌𝑋) Fn 𝑃)

Proof of Theorem fcoreslem4
StepHypRef Expression
1 fcores.g . . . . 5 (𝜑𝐺:𝐶𝐷)
21ffnd 6712 . . . 4 (𝜑𝐺 Fn 𝐶)
3 fcores.e . . . . . 6 𝐸 = (ran 𝐹𝐶)
43a1i 11 . . . . 5 (𝜑𝐸 = (ran 𝐹𝐶))
5 inss2 4224 . . . . 5 (ran 𝐹𝐶) ⊆ 𝐶
64, 5eqsstrdi 4031 . . . 4 (𝜑𝐸𝐶)
72, 6fnssresd 6668 . . 3 (𝜑 → (𝐺𝐸) Fn 𝐸)
8 fcores.y . . . 4 𝑌 = (𝐺𝐸)
98fneq1i 6640 . . 3 (𝑌 Fn 𝐸 ↔ (𝐺𝐸) Fn 𝐸)
107, 9sylibr 233 . 2 (𝜑𝑌 Fn 𝐸)
11 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
12 fcores.p . . . 4 𝑃 = (𝐹𝐶)
13 fcores.x . . . 4 𝑋 = (𝐹𝑃)
1411, 3, 12, 13fcoreslem3 46352 . . 3 (𝜑𝑋:𝑃onto𝐸)
15 fofn 6801 . . 3 (𝑋:𝑃onto𝐸𝑋 Fn 𝑃)
1614, 15syl 17 . 2 (𝜑𝑋 Fn 𝑃)
1711, 3, 12, 13fcoreslem2 46351 . . 3 (𝜑 → ran 𝑋 = 𝐸)
18 eqimss 4035 . . 3 (ran 𝑋 = 𝐸 → ran 𝑋𝐸)
1917, 18syl 17 . 2 (𝜑 → ran 𝑋𝐸)
20 fnco 6661 . 2 ((𝑌 Fn 𝐸𝑋 Fn 𝑃 ∧ ran 𝑋𝐸) → (𝑌𝑋) Fn 𝑃)
2110, 16, 19, 20syl3anc 1368 1 (𝜑 → (𝑌𝑋) Fn 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  cin 3942  wss 3943  ccnv 5668  ran crn 5670  cres 5671  cima 5672  ccom 5673   Fn wfn 6532  wf 6533  ontowfo 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-fun 6539  df-fn 6540  df-f 6541  df-fo 6543
This theorem is referenced by:  fcores  46354
  Copyright terms: Public domain W3C validator