Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoreslem4 Structured version   Visualization version   GIF version

Theorem fcoreslem4 47067
Description: Lemma 4 for fcores 47068. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcoreslem4 (𝜑 → (𝑌𝑋) Fn 𝑃)

Proof of Theorem fcoreslem4
StepHypRef Expression
1 fcores.g . . . . 5 (𝜑𝐺:𝐶𝐷)
21ffnd 6689 . . . 4 (𝜑𝐺 Fn 𝐶)
3 fcores.e . . . . . 6 𝐸 = (ran 𝐹𝐶)
43a1i 11 . . . . 5 (𝜑𝐸 = (ran 𝐹𝐶))
5 inss2 4201 . . . . 5 (ran 𝐹𝐶) ⊆ 𝐶
64, 5eqsstrdi 3991 . . . 4 (𝜑𝐸𝐶)
72, 6fnssresd 6642 . . 3 (𝜑 → (𝐺𝐸) Fn 𝐸)
8 fcores.y . . . 4 𝑌 = (𝐺𝐸)
98fneq1i 6615 . . 3 (𝑌 Fn 𝐸 ↔ (𝐺𝐸) Fn 𝐸)
107, 9sylibr 234 . 2 (𝜑𝑌 Fn 𝐸)
11 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
12 fcores.p . . . 4 𝑃 = (𝐹𝐶)
13 fcores.x . . . 4 𝑋 = (𝐹𝑃)
1411, 3, 12, 13fcoreslem3 47066 . . 3 (𝜑𝑋:𝑃onto𝐸)
15 fofn 6774 . . 3 (𝑋:𝑃onto𝐸𝑋 Fn 𝑃)
1614, 15syl 17 . 2 (𝜑𝑋 Fn 𝑃)
1711, 3, 12, 13fcoreslem2 47065 . . 3 (𝜑 → ran 𝑋 = 𝐸)
18 eqimss 4005 . . 3 (ran 𝑋 = 𝐸 → ran 𝑋𝐸)
1917, 18syl 17 . 2 (𝜑 → ran 𝑋𝐸)
20 fnco 6636 . 2 ((𝑌 Fn 𝐸𝑋 Fn 𝑃 ∧ ran 𝑋𝐸) → (𝑌𝑋) Fn 𝑃)
2110, 16, 19, 20syl3anc 1373 1 (𝜑 → (𝑌𝑋) Fn 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3913  wss 3914  ccnv 5637  ran crn 5639  cres 5640  cima 5641  ccom 5642   Fn wfn 6506  wf 6507  ontowfo 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517
This theorem is referenced by:  fcores  47068
  Copyright terms: Public domain W3C validator