Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresfo Structured version   Visualization version   GIF version

Theorem fcoresfo 46326
Description: If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
fcoresfo.s (𝜑 → (𝐺𝐹):𝑃onto𝐷)
Assertion
Ref Expression
fcoresfo (𝜑𝑌:𝐸onto𝐷)

Proof of Theorem fcoresfo
StepHypRef Expression
1 fcores.g . . . 4 (𝜑𝐺:𝐶𝐷)
2 fcores.e . . . . . 6 𝐸 = (ran 𝐹𝐶)
32a1i 11 . . . . 5 (𝜑𝐸 = (ran 𝐹𝐶))
4 inss2 4222 . . . . 5 (ran 𝐹𝐶) ⊆ 𝐶
53, 4eqsstrdi 4029 . . . 4 (𝜑𝐸𝐶)
61, 5fssresd 6749 . . 3 (𝜑 → (𝐺𝐸):𝐸𝐷)
7 fcores.y . . . 4 𝑌 = (𝐺𝐸)
87feq1i 6699 . . 3 (𝑌:𝐸𝐷 ↔ (𝐺𝐸):𝐸𝐷)
96, 8sylibr 233 . 2 (𝜑𝑌:𝐸𝐷)
10 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
11 fcores.p . . . 4 𝑃 = (𝐹𝐶)
12 fcores.x . . . 4 𝑋 = (𝐹𝑃)
1310, 2, 11, 12fcoreslem3 46320 . . 3 (𝜑𝑋:𝑃onto𝐸)
14 fof 6796 . . 3 (𝑋:𝑃onto𝐸𝑋:𝑃𝐸)
1513, 14syl 17 . 2 (𝜑𝑋:𝑃𝐸)
16 fcoresfo.s . . 3 (𝜑 → (𝐺𝐹):𝑃onto𝐷)
1710, 2, 11, 12, 1, 7fcores 46322 . . . . 5 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
1817eqcomd 2730 . . . 4 (𝜑 → (𝑌𝑋) = (𝐺𝐹))
19 foeq1 6792 . . . 4 ((𝑌𝑋) = (𝐺𝐹) → ((𝑌𝑋):𝑃onto𝐷 ↔ (𝐺𝐹):𝑃onto𝐷))
2018, 19syl 17 . . 3 (𝜑 → ((𝑌𝑋):𝑃onto𝐷 ↔ (𝐺𝐹):𝑃onto𝐷))
2116, 20mpbird 257 . 2 (𝜑 → (𝑌𝑋):𝑃onto𝐷)
22 foco2 7101 . 2 ((𝑌:𝐸𝐷𝑋:𝑃𝐸 ∧ (𝑌𝑋):𝑃onto𝐷) → 𝑌:𝐸onto𝐷)
239, 15, 21, 22syl3anc 1368 1 (𝜑𝑌:𝐸onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  cin 3940  ccnv 5666  ran crn 5668  cres 5669  cima 5670  ccom 5671  wf 6530  ontowfo 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fo 6540  df-fv 6542
This theorem is referenced by:  fcoresfob  46327  funfocofob  46331
  Copyright terms: Public domain W3C validator