![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresfo | Structured version Visualization version GIF version |
Description: If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
fcoresfo.s | ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) |
Ref | Expression |
---|---|
fcoresfo | ⊢ (𝜑 → 𝑌:𝐸–onto→𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
2 | fcores.e | . . . . . 6 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐶)) |
4 | inss2 4259 | . . . . 5 ⊢ (ran 𝐹 ∩ 𝐶) ⊆ 𝐶 | |
5 | 3, 4 | eqsstrdi 4063 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ 𝐶) |
6 | 1, 5 | fssresd 6788 | . . 3 ⊢ (𝜑 → (𝐺 ↾ 𝐸):𝐸⟶𝐷) |
7 | fcores.y | . . . 4 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
8 | 7 | feq1i 6738 | . . 3 ⊢ (𝑌:𝐸⟶𝐷 ↔ (𝐺 ↾ 𝐸):𝐸⟶𝐷) |
9 | 6, 8 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑌:𝐸⟶𝐷) |
10 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
11 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
12 | fcores.x | . . . 4 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
13 | 10, 2, 11, 12 | fcoreslem3 46980 | . . 3 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
14 | fof 6834 | . . 3 ⊢ (𝑋:𝑃–onto→𝐸 → 𝑋:𝑃⟶𝐸) | |
15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝑋:𝑃⟶𝐸) |
16 | fcoresfo.s | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) | |
17 | 10, 2, 11, 12, 1, 7 | fcores 46982 | . . . . 5 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
18 | 17 | eqcomd 2746 | . . . 4 ⊢ (𝜑 → (𝑌 ∘ 𝑋) = (𝐺 ∘ 𝐹)) |
19 | foeq1 6830 | . . . 4 ⊢ ((𝑌 ∘ 𝑋) = (𝐺 ∘ 𝐹) → ((𝑌 ∘ 𝑋):𝑃–onto→𝐷 ↔ (𝐺 ∘ 𝐹):𝑃–onto→𝐷)) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑌 ∘ 𝑋):𝑃–onto→𝐷 ↔ (𝐺 ∘ 𝐹):𝑃–onto→𝐷)) |
21 | 16, 20 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑌 ∘ 𝑋):𝑃–onto→𝐷) |
22 | foco2 7143 | . 2 ⊢ ((𝑌:𝐸⟶𝐷 ∧ 𝑋:𝑃⟶𝐸 ∧ (𝑌 ∘ 𝑋):𝑃–onto→𝐷) → 𝑌:𝐸–onto→𝐷) | |
23 | 9, 15, 21, 22 | syl3anc 1371 | 1 ⊢ (𝜑 → 𝑌:𝐸–onto→𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∩ cin 3975 ◡ccnv 5699 ran crn 5701 ↾ cres 5702 “ cima 5703 ∘ ccom 5704 ⟶wf 6569 –onto→wfo 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 |
This theorem is referenced by: fcoresfob 46987 funfocofob 46993 |
Copyright terms: Public domain | W3C validator |