Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresfo Structured version   Visualization version   GIF version

Theorem fcoresfo 47021
Description: If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
fcoresfo.s (𝜑 → (𝐺𝐹):𝑃onto𝐷)
Assertion
Ref Expression
fcoresfo (𝜑𝑌:𝐸onto𝐷)

Proof of Theorem fcoresfo
StepHypRef Expression
1 fcores.g . . . 4 (𝜑𝐺:𝐶𝐷)
2 fcores.e . . . . . 6 𝐸 = (ran 𝐹𝐶)
32a1i 11 . . . . 5 (𝜑𝐸 = (ran 𝐹𝐶))
4 inss2 4246 . . . . 5 (ran 𝐹𝐶) ⊆ 𝐶
53, 4eqsstrdi 4050 . . . 4 (𝜑𝐸𝐶)
61, 5fssresd 6776 . . 3 (𝜑 → (𝐺𝐸):𝐸𝐷)
7 fcores.y . . . 4 𝑌 = (𝐺𝐸)
87feq1i 6728 . . 3 (𝑌:𝐸𝐷 ↔ (𝐺𝐸):𝐸𝐷)
96, 8sylibr 234 . 2 (𝜑𝑌:𝐸𝐷)
10 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
11 fcores.p . . . 4 𝑃 = (𝐹𝐶)
12 fcores.x . . . 4 𝑋 = (𝐹𝑃)
1310, 2, 11, 12fcoreslem3 47015 . . 3 (𝜑𝑋:𝑃onto𝐸)
14 fof 6821 . . 3 (𝑋:𝑃onto𝐸𝑋:𝑃𝐸)
1513, 14syl 17 . 2 (𝜑𝑋:𝑃𝐸)
16 fcoresfo.s . . 3 (𝜑 → (𝐺𝐹):𝑃onto𝐷)
1710, 2, 11, 12, 1, 7fcores 47017 . . . . 5 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
1817eqcomd 2741 . . . 4 (𝜑 → (𝑌𝑋) = (𝐺𝐹))
19 foeq1 6817 . . . 4 ((𝑌𝑋) = (𝐺𝐹) → ((𝑌𝑋):𝑃onto𝐷 ↔ (𝐺𝐹):𝑃onto𝐷))
2018, 19syl 17 . . 3 (𝜑 → ((𝑌𝑋):𝑃onto𝐷 ↔ (𝐺𝐹):𝑃onto𝐷))
2116, 20mpbird 257 . 2 (𝜑 → (𝑌𝑋):𝑃onto𝐷)
22 foco2 7129 . 2 ((𝑌:𝐸𝐷𝑋:𝑃𝐸 ∧ (𝑌𝑋):𝑃onto𝐷) → 𝑌:𝐸onto𝐷)
239, 15, 21, 22syl3anc 1370 1 (𝜑𝑌:𝐸onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  cin 3962  ccnv 5688  ran crn 5690  cres 5691  cima 5692  ccom 5693  wf 6559  ontowfo 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571
This theorem is referenced by:  fcoresfob  47022  funfocofob  47028
  Copyright terms: Public domain W3C validator