Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresfo | Structured version Visualization version GIF version |
Description: If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
fcoresfo.s | ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) |
Ref | Expression |
---|---|
fcoresfo | ⊢ (𝜑 → 𝑌:𝐸–onto→𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
2 | fcores.e | . . . . . 6 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐶)) |
4 | inss2 4163 | . . . . 5 ⊢ (ran 𝐹 ∩ 𝐶) ⊆ 𝐶 | |
5 | 3, 4 | eqsstrdi 3975 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ 𝐶) |
6 | 1, 5 | fssresd 6641 | . . 3 ⊢ (𝜑 → (𝐺 ↾ 𝐸):𝐸⟶𝐷) |
7 | fcores.y | . . . 4 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
8 | 7 | feq1i 6591 | . . 3 ⊢ (𝑌:𝐸⟶𝐷 ↔ (𝐺 ↾ 𝐸):𝐸⟶𝐷) |
9 | 6, 8 | sylibr 233 | . 2 ⊢ (𝜑 → 𝑌:𝐸⟶𝐷) |
10 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
11 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
12 | fcores.x | . . . 4 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
13 | 10, 2, 11, 12 | fcoreslem3 44559 | . . 3 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
14 | fof 6688 | . . 3 ⊢ (𝑋:𝑃–onto→𝐸 → 𝑋:𝑃⟶𝐸) | |
15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝑋:𝑃⟶𝐸) |
16 | fcoresfo.s | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) | |
17 | 10, 2, 11, 12, 1, 7 | fcores 44561 | . . . . 5 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
18 | 17 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → (𝑌 ∘ 𝑋) = (𝐺 ∘ 𝐹)) |
19 | foeq1 6684 | . . . 4 ⊢ ((𝑌 ∘ 𝑋) = (𝐺 ∘ 𝐹) → ((𝑌 ∘ 𝑋):𝑃–onto→𝐷 ↔ (𝐺 ∘ 𝐹):𝑃–onto→𝐷)) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑌 ∘ 𝑋):𝑃–onto→𝐷 ↔ (𝐺 ∘ 𝐹):𝑃–onto→𝐷)) |
21 | 16, 20 | mpbird 256 | . 2 ⊢ (𝜑 → (𝑌 ∘ 𝑋):𝑃–onto→𝐷) |
22 | foco2 6983 | . 2 ⊢ ((𝑌:𝐸⟶𝐷 ∧ 𝑋:𝑃⟶𝐸 ∧ (𝑌 ∘ 𝑋):𝑃–onto→𝐷) → 𝑌:𝐸–onto→𝐷) | |
23 | 9, 15, 21, 22 | syl3anc 1370 | 1 ⊢ (𝜑 → 𝑌:𝐸–onto→𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∩ cin 3886 ◡ccnv 5588 ran crn 5590 ↾ cres 5591 “ cima 5592 ∘ ccom 5593 ⟶wf 6429 –onto→wfo 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 |
This theorem is referenced by: fcoresfob 44566 funfocofob 44570 |
Copyright terms: Public domain | W3C validator |