| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresfo | Structured version Visualization version GIF version | ||
| Description: If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024.) |
| Ref | Expression |
|---|---|
| fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
| fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
| fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
| fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
| fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
| fcoresfo.s | ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) |
| Ref | Expression |
|---|---|
| fcoresfo | ⊢ (𝜑 → 𝑌:𝐸–onto→𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
| 2 | fcores.e | . . . . . 6 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐶)) |
| 4 | inss2 4201 | . . . . 5 ⊢ (ran 𝐹 ∩ 𝐶) ⊆ 𝐶 | |
| 5 | 3, 4 | eqsstrdi 3991 | . . . 4 ⊢ (𝜑 → 𝐸 ⊆ 𝐶) |
| 6 | 1, 5 | fssresd 6727 | . . 3 ⊢ (𝜑 → (𝐺 ↾ 𝐸):𝐸⟶𝐷) |
| 7 | fcores.y | . . . 4 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
| 8 | 7 | feq1i 6679 | . . 3 ⊢ (𝑌:𝐸⟶𝐷 ↔ (𝐺 ↾ 𝐸):𝐸⟶𝐷) |
| 9 | 6, 8 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑌:𝐸⟶𝐷) |
| 10 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 11 | fcores.p | . . . 4 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
| 12 | fcores.x | . . . 4 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
| 13 | 10, 2, 11, 12 | fcoreslem3 47066 | . . 3 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
| 14 | fof 6772 | . . 3 ⊢ (𝑋:𝑃–onto→𝐸 → 𝑋:𝑃⟶𝐸) | |
| 15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝑋:𝑃⟶𝐸) |
| 16 | fcoresfo.s | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) | |
| 17 | 10, 2, 11, 12, 1, 7 | fcores 47068 | . . . . 5 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
| 18 | 17 | eqcomd 2735 | . . . 4 ⊢ (𝜑 → (𝑌 ∘ 𝑋) = (𝐺 ∘ 𝐹)) |
| 19 | foeq1 6768 | . . . 4 ⊢ ((𝑌 ∘ 𝑋) = (𝐺 ∘ 𝐹) → ((𝑌 ∘ 𝑋):𝑃–onto→𝐷 ↔ (𝐺 ∘ 𝐹):𝑃–onto→𝐷)) | |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑌 ∘ 𝑋):𝑃–onto→𝐷 ↔ (𝐺 ∘ 𝐹):𝑃–onto→𝐷)) |
| 21 | 16, 20 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑌 ∘ 𝑋):𝑃–onto→𝐷) |
| 22 | foco2 7081 | . 2 ⊢ ((𝑌:𝐸⟶𝐷 ∧ 𝑋:𝑃⟶𝐸 ∧ (𝑌 ∘ 𝑋):𝑃–onto→𝐷) → 𝑌:𝐸–onto→𝐷) | |
| 23 | 9, 15, 21, 22 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝑌:𝐸–onto→𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∩ cin 3913 ◡ccnv 5637 ran crn 5639 ↾ cres 5640 “ cima 5641 ∘ ccom 5642 ⟶wf 6507 –onto→wfo 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 |
| This theorem is referenced by: fcoresfob 47073 funfocofob 47079 |
| Copyright terms: Public domain | W3C validator |