Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresfo Structured version   Visualization version   GIF version

Theorem fcoresfo 47102
Description: If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
fcoresfo.s (𝜑 → (𝐺𝐹):𝑃onto𝐷)
Assertion
Ref Expression
fcoresfo (𝜑𝑌:𝐸onto𝐷)

Proof of Theorem fcoresfo
StepHypRef Expression
1 fcores.g . . . 4 (𝜑𝐺:𝐶𝐷)
2 fcores.e . . . . . 6 𝐸 = (ran 𝐹𝐶)
32a1i 11 . . . . 5 (𝜑𝐸 = (ran 𝐹𝐶))
4 inss2 4183 . . . . 5 (ran 𝐹𝐶) ⊆ 𝐶
53, 4eqsstrdi 3974 . . . 4 (𝜑𝐸𝐶)
61, 5fssresd 6685 . . 3 (𝜑 → (𝐺𝐸):𝐸𝐷)
7 fcores.y . . . 4 𝑌 = (𝐺𝐸)
87feq1i 6637 . . 3 (𝑌:𝐸𝐷 ↔ (𝐺𝐸):𝐸𝐷)
96, 8sylibr 234 . 2 (𝜑𝑌:𝐸𝐷)
10 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
11 fcores.p . . . 4 𝑃 = (𝐹𝐶)
12 fcores.x . . . 4 𝑋 = (𝐹𝑃)
1310, 2, 11, 12fcoreslem3 47096 . . 3 (𝜑𝑋:𝑃onto𝐸)
14 fof 6730 . . 3 (𝑋:𝑃onto𝐸𝑋:𝑃𝐸)
1513, 14syl 17 . 2 (𝜑𝑋:𝑃𝐸)
16 fcoresfo.s . . 3 (𝜑 → (𝐺𝐹):𝑃onto𝐷)
1710, 2, 11, 12, 1, 7fcores 47098 . . . . 5 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
1817eqcomd 2737 . . . 4 (𝜑 → (𝑌𝑋) = (𝐺𝐹))
19 foeq1 6726 . . . 4 ((𝑌𝑋) = (𝐺𝐹) → ((𝑌𝑋):𝑃onto𝐷 ↔ (𝐺𝐹):𝑃onto𝐷))
2018, 19syl 17 . . 3 (𝜑 → ((𝑌𝑋):𝑃onto𝐷 ↔ (𝐺𝐹):𝑃onto𝐷))
2116, 20mpbird 257 . 2 (𝜑 → (𝑌𝑋):𝑃onto𝐷)
22 foco2 7037 . 2 ((𝑌:𝐸𝐷𝑋:𝑃𝐸 ∧ (𝑌𝑋):𝑃onto𝐷) → 𝑌:𝐸onto𝐷)
239, 15, 21, 22syl3anc 1373 1 (𝜑𝑌:𝐸onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  cin 3896  ccnv 5610  ran crn 5612  cres 5613  cima 5614  ccom 5615  wf 6472  ontowfo 6474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fo 6482  df-fv 6484
This theorem is referenced by:  fcoresfob  47103  funfocofob  47109
  Copyright terms: Public domain W3C validator