Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresfo Structured version   Visualization version   GIF version

Theorem fcoresfo 47072
Description: If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
fcoresfo.s (𝜑 → (𝐺𝐹):𝑃onto𝐷)
Assertion
Ref Expression
fcoresfo (𝜑𝑌:𝐸onto𝐷)

Proof of Theorem fcoresfo
StepHypRef Expression
1 fcores.g . . . 4 (𝜑𝐺:𝐶𝐷)
2 fcores.e . . . . . 6 𝐸 = (ran 𝐹𝐶)
32a1i 11 . . . . 5 (𝜑𝐸 = (ran 𝐹𝐶))
4 inss2 4201 . . . . 5 (ran 𝐹𝐶) ⊆ 𝐶
53, 4eqsstrdi 3991 . . . 4 (𝜑𝐸𝐶)
61, 5fssresd 6727 . . 3 (𝜑 → (𝐺𝐸):𝐸𝐷)
7 fcores.y . . . 4 𝑌 = (𝐺𝐸)
87feq1i 6679 . . 3 (𝑌:𝐸𝐷 ↔ (𝐺𝐸):𝐸𝐷)
96, 8sylibr 234 . 2 (𝜑𝑌:𝐸𝐷)
10 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
11 fcores.p . . . 4 𝑃 = (𝐹𝐶)
12 fcores.x . . . 4 𝑋 = (𝐹𝑃)
1310, 2, 11, 12fcoreslem3 47066 . . 3 (𝜑𝑋:𝑃onto𝐸)
14 fof 6772 . . 3 (𝑋:𝑃onto𝐸𝑋:𝑃𝐸)
1513, 14syl 17 . 2 (𝜑𝑋:𝑃𝐸)
16 fcoresfo.s . . 3 (𝜑 → (𝐺𝐹):𝑃onto𝐷)
1710, 2, 11, 12, 1, 7fcores 47068 . . . . 5 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
1817eqcomd 2735 . . . 4 (𝜑 → (𝑌𝑋) = (𝐺𝐹))
19 foeq1 6768 . . . 4 ((𝑌𝑋) = (𝐺𝐹) → ((𝑌𝑋):𝑃onto𝐷 ↔ (𝐺𝐹):𝑃onto𝐷))
2018, 19syl 17 . . 3 (𝜑 → ((𝑌𝑋):𝑃onto𝐷 ↔ (𝐺𝐹):𝑃onto𝐷))
2116, 20mpbird 257 . 2 (𝜑 → (𝑌𝑋):𝑃onto𝐷)
22 foco2 7081 . 2 ((𝑌:𝐸𝐷𝑋:𝑃𝐸 ∧ (𝑌𝑋):𝑃onto𝐷) → 𝑌:𝐸onto𝐷)
239, 15, 21, 22syl3anc 1373 1 (𝜑𝑌:𝐸onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  cin 3913  ccnv 5637  ran crn 5639  cres 5640  cima 5641  ccom 5642  wf 6507  ontowfo 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519
This theorem is referenced by:  fcoresfob  47073  funfocofob  47079
  Copyright terms: Public domain W3C validator