Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresf1lem | Structured version Visualization version GIF version |
Description: Lemma for fcoresf1 44541. (Contributed by AV, 18-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
Ref | Expression |
---|---|
fcoresf1lem | ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = (𝑌‘(𝑋‘𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fcores.e | . . . . 5 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
3 | fcores.p | . . . . 5 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
4 | fcores.x | . . . . 5 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
5 | fcores.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
6 | fcores.y | . . . . 5 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
7 | 1, 2, 3, 4, 5, 6 | fcores 44539 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
8 | 7 | fveq1d 6768 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹)‘𝑍) = ((𝑌 ∘ 𝑋)‘𝑍)) |
9 | 8 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = ((𝑌 ∘ 𝑋)‘𝑍)) |
10 | 1, 2, 3, 4 | fcoreslem3 44537 | . . . . 5 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
11 | fof 6680 | . . . . 5 ⊢ (𝑋:𝑃–onto→𝐸 → 𝑋:𝑃⟶𝐸) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋:𝑃⟶𝐸) |
13 | 12 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → 𝑋:𝑃⟶𝐸) |
14 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → 𝑍 ∈ 𝑃) | |
15 | 13, 14 | fvco3d 6860 | . 2 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝑌 ∘ 𝑋)‘𝑍) = (𝑌‘(𝑋‘𝑍))) |
16 | 9, 15 | eqtrd 2778 | 1 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = (𝑌‘(𝑋‘𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3885 ◡ccnv 5583 ran crn 5585 ↾ cres 5586 “ cima 5587 ∘ ccom 5588 ⟶wf 6422 –onto→wfo 6424 ‘cfv 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-fo 6432 df-fv 6434 |
This theorem is referenced by: fcoresf1 44541 |
Copyright terms: Public domain | W3C validator |