Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresf1lem Structured version   Visualization version   GIF version

Theorem fcoresf1lem 46363
Description: Lemma for fcoresf1 46364. (Contributed by AV, 18-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcoresf1lem ((𝜑𝑍𝑃) → ((𝐺𝐹)‘𝑍) = (𝑌‘(𝑋𝑍)))

Proof of Theorem fcoresf1lem
StepHypRef Expression
1 fcores.f . . . . 5 (𝜑𝐹:𝐴𝐵)
2 fcores.e . . . . 5 𝐸 = (ran 𝐹𝐶)
3 fcores.p . . . . 5 𝑃 = (𝐹𝐶)
4 fcores.x . . . . 5 𝑋 = (𝐹𝑃)
5 fcores.g . . . . 5 (𝜑𝐺:𝐶𝐷)
6 fcores.y . . . . 5 𝑌 = (𝐺𝐸)
71, 2, 3, 4, 5, 6fcores 46362 . . . 4 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
87fveq1d 6893 . . 3 (𝜑 → ((𝐺𝐹)‘𝑍) = ((𝑌𝑋)‘𝑍))
98adantr 480 . 2 ((𝜑𝑍𝑃) → ((𝐺𝐹)‘𝑍) = ((𝑌𝑋)‘𝑍))
101, 2, 3, 4fcoreslem3 46360 . . . . 5 (𝜑𝑋:𝑃onto𝐸)
11 fof 6805 . . . . 5 (𝑋:𝑃onto𝐸𝑋:𝑃𝐸)
1210, 11syl 17 . . . 4 (𝜑𝑋:𝑃𝐸)
1312adantr 480 . . 3 ((𝜑𝑍𝑃) → 𝑋:𝑃𝐸)
14 simpr 484 . . 3 ((𝜑𝑍𝑃) → 𝑍𝑃)
1513, 14fvco3d 6992 . 2 ((𝜑𝑍𝑃) → ((𝑌𝑋)‘𝑍) = (𝑌‘(𝑋𝑍)))
169, 15eqtrd 2767 1 ((𝜑𝑍𝑃) → ((𝐺𝐹)‘𝑍) = (𝑌‘(𝑋𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cin 3943  ccnv 5671  ran crn 5673  cres 5674  cima 5675  ccom 5676  wf 6538  ontowfo 6540  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550
This theorem is referenced by:  fcoresf1  46364
  Copyright terms: Public domain W3C validator