Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresf1lem Structured version   Visualization version   GIF version

Theorem fcoresf1lem 46983
Description: Lemma for fcoresf1 46984. (Contributed by AV, 18-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcoresf1lem ((𝜑𝑍𝑃) → ((𝐺𝐹)‘𝑍) = (𝑌‘(𝑋𝑍)))

Proof of Theorem fcoresf1lem
StepHypRef Expression
1 fcores.f . . . . 5 (𝜑𝐹:𝐴𝐵)
2 fcores.e . . . . 5 𝐸 = (ran 𝐹𝐶)
3 fcores.p . . . . 5 𝑃 = (𝐹𝐶)
4 fcores.x . . . . 5 𝑋 = (𝐹𝑃)
5 fcores.g . . . . 5 (𝜑𝐺:𝐶𝐷)
6 fcores.y . . . . 5 𝑌 = (𝐺𝐸)
71, 2, 3, 4, 5, 6fcores 46982 . . . 4 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
87fveq1d 6922 . . 3 (𝜑 → ((𝐺𝐹)‘𝑍) = ((𝑌𝑋)‘𝑍))
98adantr 480 . 2 ((𝜑𝑍𝑃) → ((𝐺𝐹)‘𝑍) = ((𝑌𝑋)‘𝑍))
101, 2, 3, 4fcoreslem3 46980 . . . . 5 (𝜑𝑋:𝑃onto𝐸)
11 fof 6834 . . . . 5 (𝑋:𝑃onto𝐸𝑋:𝑃𝐸)
1210, 11syl 17 . . . 4 (𝜑𝑋:𝑃𝐸)
1312adantr 480 . . 3 ((𝜑𝑍𝑃) → 𝑋:𝑃𝐸)
14 simpr 484 . . 3 ((𝜑𝑍𝑃) → 𝑍𝑃)
1513, 14fvco3d 7022 . 2 ((𝜑𝑍𝑃) → ((𝑌𝑋)‘𝑍) = (𝑌‘(𝑋𝑍)))
169, 15eqtrd 2780 1 ((𝜑𝑍𝑃) → ((𝐺𝐹)‘𝑍) = (𝑌‘(𝑋𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cin 3975  ccnv 5699  ran crn 5701  cres 5702  cima 5703  ccom 5704  wf 6569  ontowfo 6571  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581
This theorem is referenced by:  fcoresf1  46984
  Copyright terms: Public domain W3C validator