| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresf1lem | Structured version Visualization version GIF version | ||
| Description: Lemma for fcoresf1 47179. (Contributed by AV, 18-Sep-2024.) |
| Ref | Expression |
|---|---|
| fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
| fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
| fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
| fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
| fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
| Ref | Expression |
|---|---|
| fcoresf1lem | ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = (𝑌‘(𝑋‘𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fcores.e | . . . . 5 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
| 3 | fcores.p | . . . . 5 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
| 4 | fcores.x | . . . . 5 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
| 5 | fcores.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
| 6 | fcores.y | . . . . 5 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
| 7 | 1, 2, 3, 4, 5, 6 | fcores 47177 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
| 8 | 7 | fveq1d 6824 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹)‘𝑍) = ((𝑌 ∘ 𝑋)‘𝑍)) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = ((𝑌 ∘ 𝑋)‘𝑍)) |
| 10 | 1, 2, 3, 4 | fcoreslem3 47175 | . . . . 5 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
| 11 | fof 6735 | . . . . 5 ⊢ (𝑋:𝑃–onto→𝐸 → 𝑋:𝑃⟶𝐸) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋:𝑃⟶𝐸) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → 𝑋:𝑃⟶𝐸) |
| 14 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → 𝑍 ∈ 𝑃) | |
| 15 | 13, 14 | fvco3d 6922 | . 2 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝑌 ∘ 𝑋)‘𝑍) = (𝑌‘(𝑋‘𝑍))) |
| 16 | 9, 15 | eqtrd 2766 | 1 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = (𝑌‘(𝑋‘𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ◡ccnv 5613 ran crn 5615 ↾ cres 5616 “ cima 5617 ∘ ccom 5618 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 |
| This theorem is referenced by: fcoresf1 47179 |
| Copyright terms: Public domain | W3C validator |