![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresf1lem | Structured version Visualization version GIF version |
Description: Lemma for fcoresf1 46513. (Contributed by AV, 18-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
Ref | Expression |
---|---|
fcoresf1lem | ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = (𝑌‘(𝑋‘𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fcores.e | . . . . 5 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
3 | fcores.p | . . . . 5 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
4 | fcores.x | . . . . 5 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
5 | fcores.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
6 | fcores.y | . . . . 5 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
7 | 1, 2, 3, 4, 5, 6 | fcores 46511 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
8 | 7 | fveq1d 6893 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹)‘𝑍) = ((𝑌 ∘ 𝑋)‘𝑍)) |
9 | 8 | adantr 479 | . 2 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = ((𝑌 ∘ 𝑋)‘𝑍)) |
10 | 1, 2, 3, 4 | fcoreslem3 46509 | . . . . 5 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
11 | fof 6805 | . . . . 5 ⊢ (𝑋:𝑃–onto→𝐸 → 𝑋:𝑃⟶𝐸) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋:𝑃⟶𝐸) |
13 | 12 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → 𝑋:𝑃⟶𝐸) |
14 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → 𝑍 ∈ 𝑃) | |
15 | 13, 14 | fvco3d 6992 | . 2 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝑌 ∘ 𝑋)‘𝑍) = (𝑌‘(𝑋‘𝑍))) |
16 | 9, 15 | eqtrd 2765 | 1 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = (𝑌‘(𝑋‘𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∩ cin 3939 ◡ccnv 5671 ran crn 5673 ↾ cres 5674 “ cima 5675 ∘ ccom 5676 ⟶wf 6538 –onto→wfo 6540 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 |
This theorem is referenced by: fcoresf1 46513 |
Copyright terms: Public domain | W3C validator |