![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresf1lem | Structured version Visualization version GIF version |
Description: Lemma for fcoresf1 45765. (Contributed by AV, 18-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
Ref | Expression |
---|---|
fcoresf1lem | ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = (𝑌‘(𝑋‘𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fcores.e | . . . . 5 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
3 | fcores.p | . . . . 5 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
4 | fcores.x | . . . . 5 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
5 | fcores.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
6 | fcores.y | . . . . 5 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
7 | 1, 2, 3, 4, 5, 6 | fcores 45763 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
8 | 7 | fveq1d 6890 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹)‘𝑍) = ((𝑌 ∘ 𝑋)‘𝑍)) |
9 | 8 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = ((𝑌 ∘ 𝑋)‘𝑍)) |
10 | 1, 2, 3, 4 | fcoreslem3 45761 | . . . . 5 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
11 | fof 6802 | . . . . 5 ⊢ (𝑋:𝑃–onto→𝐸 → 𝑋:𝑃⟶𝐸) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋:𝑃⟶𝐸) |
13 | 12 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → 𝑋:𝑃⟶𝐸) |
14 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → 𝑍 ∈ 𝑃) | |
15 | 13, 14 | fvco3d 6988 | . 2 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝑌 ∘ 𝑋)‘𝑍) = (𝑌‘(𝑋‘𝑍))) |
16 | 9, 15 | eqtrd 2772 | 1 ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = (𝑌‘(𝑋‘𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∩ cin 3946 ◡ccnv 5674 ran crn 5676 ↾ cres 5677 “ cima 5678 ∘ ccom 5679 ⟶wf 6536 –onto→wfo 6538 ‘cfv 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 |
This theorem is referenced by: fcoresf1 45765 |
Copyright terms: Public domain | W3C validator |