| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresfob | Structured version Visualization version GIF version | ||
| Description: A composition is surjective iff the restriction of its first component to the minimum domain is surjective. (Contributed by GL and AV, 7-Oct-2024.) |
| Ref | Expression |
|---|---|
| fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
| fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
| fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
| fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
| fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
| Ref | Expression |
|---|---|
| fcoresfob | ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ 𝑌:𝐸–onto→𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) → 𝐹:𝐴⟶𝐵) |
| 3 | fcores.e | . . 3 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
| 4 | fcores.p | . . 3 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
| 5 | fcores.x | . . 3 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
| 6 | fcores.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) → 𝐺:𝐶⟶𝐷) |
| 8 | fcores.y | . . 3 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
| 9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) | |
| 10 | 2, 3, 4, 5, 7, 8, 9 | fcoresfo 47076 | . 2 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) → 𝑌:𝐸–onto→𝐷) |
| 11 | 1, 3, 4, 5 | fcoreslem3 47070 | . . . . 5 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
| 12 | 11 | anim1ci 616 | . . . 4 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → (𝑌:𝐸–onto→𝐷 ∧ 𝑋:𝑃–onto→𝐸)) |
| 13 | foco 6789 | . . . 4 ⊢ ((𝑌:𝐸–onto→𝐷 ∧ 𝑋:𝑃–onto→𝐸) → (𝑌 ∘ 𝑋):𝑃–onto→𝐷) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → (𝑌 ∘ 𝑋):𝑃–onto→𝐷) |
| 15 | 1, 3, 4, 5, 6, 8 | fcores 47072 | . . . . 5 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
| 17 | foeq1 6771 | . . . 4 ⊢ ((𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋) → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ (𝑌 ∘ 𝑋):𝑃–onto→𝐷)) | |
| 18 | 16, 17 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ (𝑌 ∘ 𝑋):𝑃–onto→𝐷)) |
| 19 | 14, 18 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) |
| 20 | 10, 19 | impbida 800 | 1 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ 𝑌:𝐸–onto→𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∩ cin 3916 ◡ccnv 5640 ran crn 5642 ↾ cres 5643 “ cima 5644 ∘ ccom 5645 ⟶wf 6510 –onto→wfo 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 |
| This theorem is referenced by: fcoresf1ob 47078 |
| Copyright terms: Public domain | W3C validator |