Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresfob Structured version   Visualization version   GIF version

Theorem fcoresfob 47182
Description: A composition is surjective iff the restriction of its first component to the minimum domain is surjective. (Contributed by GL and AV, 7-Oct-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcoresfob (𝜑 → ((𝐺𝐹):𝑃onto𝐷𝑌:𝐸onto𝐷))

Proof of Theorem fcoresfob
StepHypRef Expression
1 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
21adantr 480 . . 3 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → 𝐹:𝐴𝐵)
3 fcores.e . . 3 𝐸 = (ran 𝐹𝐶)
4 fcores.p . . 3 𝑃 = (𝐹𝐶)
5 fcores.x . . 3 𝑋 = (𝐹𝑃)
6 fcores.g . . . 4 (𝜑𝐺:𝐶𝐷)
76adantr 480 . . 3 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → 𝐺:𝐶𝐷)
8 fcores.y . . 3 𝑌 = (𝐺𝐸)
9 simpr 484 . . 3 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → (𝐺𝐹):𝑃onto𝐷)
102, 3, 4, 5, 7, 8, 9fcoresfo 47181 . 2 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → 𝑌:𝐸onto𝐷)
111, 3, 4, 5fcoreslem3 47175 . . . . 5 (𝜑𝑋:𝑃onto𝐸)
1211anim1ci 616 . . . 4 ((𝜑𝑌:𝐸onto𝐷) → (𝑌:𝐸onto𝐷𝑋:𝑃onto𝐸))
13 foco 6749 . . . 4 ((𝑌:𝐸onto𝐷𝑋:𝑃onto𝐸) → (𝑌𝑋):𝑃onto𝐷)
1412, 13syl 17 . . 3 ((𝜑𝑌:𝐸onto𝐷) → (𝑌𝑋):𝑃onto𝐷)
151, 3, 4, 5, 6, 8fcores 47177 . . . . 5 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
1615adantr 480 . . . 4 ((𝜑𝑌:𝐸onto𝐷) → (𝐺𝐹) = (𝑌𝑋))
17 foeq1 6731 . . . 4 ((𝐺𝐹) = (𝑌𝑋) → ((𝐺𝐹):𝑃onto𝐷 ↔ (𝑌𝑋):𝑃onto𝐷))
1816, 17syl 17 . . 3 ((𝜑𝑌:𝐸onto𝐷) → ((𝐺𝐹):𝑃onto𝐷 ↔ (𝑌𝑋):𝑃onto𝐷))
1914, 18mpbird 257 . 2 ((𝜑𝑌:𝐸onto𝐷) → (𝐺𝐹):𝑃onto𝐷)
2010, 19impbida 800 1 (𝜑 → ((𝐺𝐹):𝑃onto𝐷𝑌:𝐸onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  cin 3896  ccnv 5613  ran crn 5615  cres 5616  cima 5617  ccom 5618  wf 6477  ontowfo 6479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489
This theorem is referenced by:  fcoresf1ob  47183
  Copyright terms: Public domain W3C validator