Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresfob Structured version   Visualization version   GIF version

Theorem fcoresfob 47066
Description: A composition is surjective iff the restriction of its first component to the minimum domain is surjective. (Contributed by GL and AV, 7-Oct-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcoresfob (𝜑 → ((𝐺𝐹):𝑃onto𝐷𝑌:𝐸onto𝐷))

Proof of Theorem fcoresfob
StepHypRef Expression
1 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
21adantr 480 . . 3 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → 𝐹:𝐴𝐵)
3 fcores.e . . 3 𝐸 = (ran 𝐹𝐶)
4 fcores.p . . 3 𝑃 = (𝐹𝐶)
5 fcores.x . . 3 𝑋 = (𝐹𝑃)
6 fcores.g . . . 4 (𝜑𝐺:𝐶𝐷)
76adantr 480 . . 3 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → 𝐺:𝐶𝐷)
8 fcores.y . . 3 𝑌 = (𝐺𝐸)
9 simpr 484 . . 3 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → (𝐺𝐹):𝑃onto𝐷)
102, 3, 4, 5, 7, 8, 9fcoresfo 47065 . 2 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → 𝑌:𝐸onto𝐷)
111, 3, 4, 5fcoreslem3 47059 . . . . 5 (𝜑𝑋:𝑃onto𝐸)
1211anim1ci 616 . . . 4 ((𝜑𝑌:𝐸onto𝐷) → (𝑌:𝐸onto𝐷𝑋:𝑃onto𝐸))
13 foco 6768 . . . 4 ((𝑌:𝐸onto𝐷𝑋:𝑃onto𝐸) → (𝑌𝑋):𝑃onto𝐷)
1412, 13syl 17 . . 3 ((𝜑𝑌:𝐸onto𝐷) → (𝑌𝑋):𝑃onto𝐷)
151, 3, 4, 5, 6, 8fcores 47061 . . . . 5 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
1615adantr 480 . . . 4 ((𝜑𝑌:𝐸onto𝐷) → (𝐺𝐹) = (𝑌𝑋))
17 foeq1 6750 . . . 4 ((𝐺𝐹) = (𝑌𝑋) → ((𝐺𝐹):𝑃onto𝐷 ↔ (𝑌𝑋):𝑃onto𝐷))
1816, 17syl 17 . . 3 ((𝜑𝑌:𝐸onto𝐷) → ((𝐺𝐹):𝑃onto𝐷 ↔ (𝑌𝑋):𝑃onto𝐷))
1914, 18mpbird 257 . 2 ((𝜑𝑌:𝐸onto𝐷) → (𝐺𝐹):𝑃onto𝐷)
2010, 19impbida 800 1 (𝜑 → ((𝐺𝐹):𝑃onto𝐷𝑌:𝐸onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  cin 3910  ccnv 5630  ran crn 5632  cres 5633  cima 5634  ccom 5635  wf 6495  ontowfo 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507
This theorem is referenced by:  fcoresf1ob  47067
  Copyright terms: Public domain W3C validator