Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresfob Structured version   Visualization version   GIF version

Theorem fcoresfob 46233
Description: A composition is surjective iff the restriction of its first component to the minimum domain is surjective. (Contributed by GL and AV, 7-Oct-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcoresfob (𝜑 → ((𝐺𝐹):𝑃onto𝐷𝑌:𝐸onto𝐷))

Proof of Theorem fcoresfob
StepHypRef Expression
1 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
21adantr 480 . . 3 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → 𝐹:𝐴𝐵)
3 fcores.e . . 3 𝐸 = (ran 𝐹𝐶)
4 fcores.p . . 3 𝑃 = (𝐹𝐶)
5 fcores.x . . 3 𝑋 = (𝐹𝑃)
6 fcores.g . . . 4 (𝜑𝐺:𝐶𝐷)
76adantr 480 . . 3 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → 𝐺:𝐶𝐷)
8 fcores.y . . 3 𝑌 = (𝐺𝐸)
9 simpr 484 . . 3 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → (𝐺𝐹):𝑃onto𝐷)
102, 3, 4, 5, 7, 8, 9fcoresfo 46232 . 2 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → 𝑌:𝐸onto𝐷)
111, 3, 4, 5fcoreslem3 46226 . . . . 5 (𝜑𝑋:𝑃onto𝐸)
1211anim1ci 615 . . . 4 ((𝜑𝑌:𝐸onto𝐷) → (𝑌:𝐸onto𝐷𝑋:𝑃onto𝐸))
13 foco 6809 . . . 4 ((𝑌:𝐸onto𝐷𝑋:𝑃onto𝐸) → (𝑌𝑋):𝑃onto𝐷)
1412, 13syl 17 . . 3 ((𝜑𝑌:𝐸onto𝐷) → (𝑌𝑋):𝑃onto𝐷)
151, 3, 4, 5, 6, 8fcores 46228 . . . . 5 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
1615adantr 480 . . . 4 ((𝜑𝑌:𝐸onto𝐷) → (𝐺𝐹) = (𝑌𝑋))
17 foeq1 6791 . . . 4 ((𝐺𝐹) = (𝑌𝑋) → ((𝐺𝐹):𝑃onto𝐷 ↔ (𝑌𝑋):𝑃onto𝐷))
1816, 17syl 17 . . 3 ((𝜑𝑌:𝐸onto𝐷) → ((𝐺𝐹):𝑃onto𝐷 ↔ (𝑌𝑋):𝑃onto𝐷))
1914, 18mpbird 257 . 2 ((𝜑𝑌:𝐸onto𝐷) → (𝐺𝐹):𝑃onto𝐷)
2010, 19impbida 798 1 (𝜑 → ((𝐺𝐹):𝑃onto𝐷𝑌:𝐸onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  cin 3939  ccnv 5665  ran crn 5667  cres 5668  cima 5669  ccom 5670  wf 6529  ontowfo 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fo 6539  df-fv 6541
This theorem is referenced by:  fcoresf1ob  46234
  Copyright terms: Public domain W3C validator