![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresfob | Structured version Visualization version GIF version |
Description: A composition is surjective iff the restriction of its first component to the minimum domain is surjective. (Contributed by GL and AV, 7-Oct-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
Ref | Expression |
---|---|
fcoresfob | ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ 𝑌:𝐸–onto→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) → 𝐹:𝐴⟶𝐵) |
3 | fcores.e | . . 3 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
4 | fcores.p | . . 3 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
5 | fcores.x | . . 3 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
6 | fcores.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
7 | 6 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) → 𝐺:𝐶⟶𝐷) |
8 | fcores.y | . . 3 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
9 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) | |
10 | 2, 3, 4, 5, 7, 8, 9 | fcoresfo 46591 | . 2 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) → 𝑌:𝐸–onto→𝐷) |
11 | 1, 3, 4, 5 | fcoreslem3 46585 | . . . . 5 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
12 | 11 | anim1ci 614 | . . . 4 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → (𝑌:𝐸–onto→𝐷 ∧ 𝑋:𝑃–onto→𝐸)) |
13 | foco 6824 | . . . 4 ⊢ ((𝑌:𝐸–onto→𝐷 ∧ 𝑋:𝑃–onto→𝐸) → (𝑌 ∘ 𝑋):𝑃–onto→𝐷) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → (𝑌 ∘ 𝑋):𝑃–onto→𝐷) |
15 | 1, 3, 4, 5, 6, 8 | fcores 46587 | . . . . 5 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
16 | 15 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
17 | foeq1 6806 | . . . 4 ⊢ ((𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋) → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ (𝑌 ∘ 𝑋):𝑃–onto→𝐷)) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ (𝑌 ∘ 𝑋):𝑃–onto→𝐷)) |
19 | 14, 18 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) |
20 | 10, 19 | impbida 799 | 1 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ 𝑌:𝐸–onto→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∩ cin 3943 ◡ccnv 5677 ran crn 5679 ↾ cres 5680 “ cima 5681 ∘ ccom 5682 ⟶wf 6545 –onto→wfo 6547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fo 6555 df-fv 6557 |
This theorem is referenced by: fcoresf1ob 46593 |
Copyright terms: Public domain | W3C validator |