Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoresfob | Structured version Visualization version GIF version |
Description: A composition is surjective iff the restriction of its first component to the minimum domain is surjective. (Contributed by GL and AV, 7-Oct-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
fcores.x | ⊢ 𝑋 = (𝐹 ↾ 𝑃) |
fcores.g | ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) |
fcores.y | ⊢ 𝑌 = (𝐺 ↾ 𝐸) |
Ref | Expression |
---|---|
fcoresfob | ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ 𝑌:𝐸–onto→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) → 𝐹:𝐴⟶𝐵) |
3 | fcores.e | . . 3 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
4 | fcores.p | . . 3 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
5 | fcores.x | . . 3 ⊢ 𝑋 = (𝐹 ↾ 𝑃) | |
6 | fcores.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) | |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) → 𝐺:𝐶⟶𝐷) |
8 | fcores.y | . . 3 ⊢ 𝑌 = (𝐺 ↾ 𝐸) | |
9 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) | |
10 | 2, 3, 4, 5, 7, 8, 9 | fcoresfo 44565 | . 2 ⊢ ((𝜑 ∧ (𝐺 ∘ 𝐹):𝑃–onto→𝐷) → 𝑌:𝐸–onto→𝐷) |
11 | 1, 3, 4, 5 | fcoreslem3 44559 | . . . . 5 ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) |
12 | 11 | anim1ci 616 | . . . 4 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → (𝑌:𝐸–onto→𝐷 ∧ 𝑋:𝑃–onto→𝐸)) |
13 | foco 6702 | . . . 4 ⊢ ((𝑌:𝐸–onto→𝐷 ∧ 𝑋:𝑃–onto→𝐸) → (𝑌 ∘ 𝑋):𝑃–onto→𝐷) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → (𝑌 ∘ 𝑋):𝑃–onto→𝐷) |
15 | 1, 3, 4, 5, 6, 8 | fcores 44561 | . . . . 5 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
16 | 15 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) |
17 | foeq1 6684 | . . . 4 ⊢ ((𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋) → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ (𝑌 ∘ 𝑋):𝑃–onto→𝐷)) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ (𝑌 ∘ 𝑋):𝑃–onto→𝐷)) |
19 | 14, 18 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝑌:𝐸–onto→𝐷) → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) |
20 | 10, 19 | impbida 798 | 1 ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ 𝑌:𝐸–onto→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∩ cin 3886 ◡ccnv 5588 ran crn 5590 ↾ cres 5591 “ cima 5592 ∘ ccom 5593 ⟶wf 6429 –onto→wfo 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 |
This theorem is referenced by: fcoresf1ob 44567 |
Copyright terms: Public domain | W3C validator |