Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoresfob Structured version   Visualization version   GIF version

Theorem fcoresfob 44566
Description: A composition is surjective iff the restriction of its first component to the minimum domain is surjective. (Contributed by GL and AV, 7-Oct-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
fcores.x 𝑋 = (𝐹𝑃)
fcores.g (𝜑𝐺:𝐶𝐷)
fcores.y 𝑌 = (𝐺𝐸)
Assertion
Ref Expression
fcoresfob (𝜑 → ((𝐺𝐹):𝑃onto𝐷𝑌:𝐸onto𝐷))

Proof of Theorem fcoresfob
StepHypRef Expression
1 fcores.f . . . 4 (𝜑𝐹:𝐴𝐵)
21adantr 481 . . 3 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → 𝐹:𝐴𝐵)
3 fcores.e . . 3 𝐸 = (ran 𝐹𝐶)
4 fcores.p . . 3 𝑃 = (𝐹𝐶)
5 fcores.x . . 3 𝑋 = (𝐹𝑃)
6 fcores.g . . . 4 (𝜑𝐺:𝐶𝐷)
76adantr 481 . . 3 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → 𝐺:𝐶𝐷)
8 fcores.y . . 3 𝑌 = (𝐺𝐸)
9 simpr 485 . . 3 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → (𝐺𝐹):𝑃onto𝐷)
102, 3, 4, 5, 7, 8, 9fcoresfo 44565 . 2 ((𝜑 ∧ (𝐺𝐹):𝑃onto𝐷) → 𝑌:𝐸onto𝐷)
111, 3, 4, 5fcoreslem3 44559 . . . . 5 (𝜑𝑋:𝑃onto𝐸)
1211anim1ci 616 . . . 4 ((𝜑𝑌:𝐸onto𝐷) → (𝑌:𝐸onto𝐷𝑋:𝑃onto𝐸))
13 foco 6702 . . . 4 ((𝑌:𝐸onto𝐷𝑋:𝑃onto𝐸) → (𝑌𝑋):𝑃onto𝐷)
1412, 13syl 17 . . 3 ((𝜑𝑌:𝐸onto𝐷) → (𝑌𝑋):𝑃onto𝐷)
151, 3, 4, 5, 6, 8fcores 44561 . . . . 5 (𝜑 → (𝐺𝐹) = (𝑌𝑋))
1615adantr 481 . . . 4 ((𝜑𝑌:𝐸onto𝐷) → (𝐺𝐹) = (𝑌𝑋))
17 foeq1 6684 . . . 4 ((𝐺𝐹) = (𝑌𝑋) → ((𝐺𝐹):𝑃onto𝐷 ↔ (𝑌𝑋):𝑃onto𝐷))
1816, 17syl 17 . . 3 ((𝜑𝑌:𝐸onto𝐷) → ((𝐺𝐹):𝑃onto𝐷 ↔ (𝑌𝑋):𝑃onto𝐷))
1914, 18mpbird 256 . 2 ((𝜑𝑌:𝐸onto𝐷) → (𝐺𝐹):𝑃onto𝐷)
2010, 19impbida 798 1 (𝜑 → ((𝐺𝐹):𝑃onto𝐷𝑌:𝐸onto𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  cin 3886  ccnv 5588  ran crn 5590  cres 5591  cima 5592  ccom 5593  wf 6429  ontowfo 6431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441
This theorem is referenced by:  fcoresf1ob  44567
  Copyright terms: Public domain W3C validator