| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimacnvinrn2 | Structured version Visualization version GIF version | ||
| Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
| Ref | Expression |
|---|---|
| fimacnvinrn2 | ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass 4191 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∩ ran 𝐹) = (𝐴 ∩ (𝐵 ∩ ran 𝐹)) | |
| 2 | sseqin2 4186 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ 𝐵 ↔ (𝐵 ∩ ran 𝐹) = ran 𝐹) | |
| 3 | 2 | biimpi 216 | . . . . . 6 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐵 ∩ ran 𝐹) = ran 𝐹) |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (𝐵 ∩ ran 𝐹) = ran 𝐹) |
| 5 | 4 | ineq2d 4183 | . . . 4 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (𝐴 ∩ (𝐵 ∩ ran 𝐹)) = (𝐴 ∩ ran 𝐹)) |
| 6 | 1, 5 | eqtrid 2776 | . . 3 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ((𝐴 ∩ 𝐵) ∩ ran 𝐹) = (𝐴 ∩ ran 𝐹)) |
| 7 | 6 | imaeq2d 6031 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹)) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
| 8 | fimacnvinrn 7043 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹))) | |
| 9 | 8 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹))) |
| 10 | fimacnvinrn 7043 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) | |
| 11 | 10 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
| 12 | 7, 9, 11 | 3eqtr4rd 2775 | 1 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∩ cin 3913 ⊆ wss 3914 ◡ccnv 5637 ran crn 5639 “ cima 5641 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 |
| This theorem is referenced by: eulerpartgbij 34363 orvcval4 34452 preimaioomnf 46717 |
| Copyright terms: Public domain | W3C validator |