Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fimacnvinrn2 | Structured version Visualization version GIF version |
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
Ref | Expression |
---|---|
fimacnvinrn2 | ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4126 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∩ ran 𝐹) = (𝐴 ∩ (𝐵 ∩ ran 𝐹)) | |
2 | sseqin2 4122 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ 𝐵 ↔ (𝐵 ∩ ran 𝐹) = ran 𝐹) | |
3 | 2 | biimpi 219 | . . . . . 6 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐵 ∩ ran 𝐹) = ran 𝐹) |
4 | 3 | adantl 485 | . . . . 5 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (𝐵 ∩ ran 𝐹) = ran 𝐹) |
5 | 4 | ineq2d 4119 | . . . 4 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (𝐴 ∩ (𝐵 ∩ ran 𝐹)) = (𝐴 ∩ ran 𝐹)) |
6 | 1, 5 | syl5eq 2805 | . . 3 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ((𝐴 ∩ 𝐵) ∩ ran 𝐹) = (𝐴 ∩ ran 𝐹)) |
7 | 6 | imaeq2d 5906 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹)) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
8 | fimacnvinrn 6837 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹))) | |
9 | 8 | adantr 484 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹))) |
10 | fimacnvinrn 6837 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) | |
11 | 10 | adantr 484 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
12 | 7, 9, 11 | 3eqtr4rd 2804 | 1 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∩ cin 3859 ⊆ wss 3860 ◡ccnv 5527 ran crn 5529 “ cima 5531 Fun wfun 6334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fo 6346 df-fv 6348 |
This theorem is referenced by: eulerpartgbij 31870 orvcval4 31958 preimaioomnf 43755 |
Copyright terms: Public domain | W3C validator |