MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvinrn2 Structured version   Visualization version   GIF version

Theorem fimacnvinrn2 7106
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 17-Feb-2017.)
Assertion
Ref Expression
fimacnvinrn2 ((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐹𝐴) = (𝐹 “ (𝐴𝐵)))

Proof of Theorem fimacnvinrn2
StepHypRef Expression
1 inass 4249 . . . 4 ((𝐴𝐵) ∩ ran 𝐹) = (𝐴 ∩ (𝐵 ∩ ran 𝐹))
2 sseqin2 4244 . . . . . . 7 (ran 𝐹𝐵 ↔ (𝐵 ∩ ran 𝐹) = ran 𝐹)
32biimpi 216 . . . . . 6 (ran 𝐹𝐵 → (𝐵 ∩ ran 𝐹) = ran 𝐹)
43adantl 481 . . . . 5 ((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐵 ∩ ran 𝐹) = ran 𝐹)
54ineq2d 4241 . . . 4 ((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐴 ∩ (𝐵 ∩ ran 𝐹)) = (𝐴 ∩ ran 𝐹))
61, 5eqtrid 2792 . . 3 ((Fun 𝐹 ∧ ran 𝐹𝐵) → ((𝐴𝐵) ∩ ran 𝐹) = (𝐴 ∩ ran 𝐹))
76imaeq2d 6089 . 2 ((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐹 “ ((𝐴𝐵) ∩ ran 𝐹)) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
8 fimacnvinrn 7105 . . 3 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = (𝐹 “ ((𝐴𝐵) ∩ ran 𝐹)))
98adantr 480 . 2 ((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐹 “ (𝐴𝐵)) = (𝐹 “ ((𝐴𝐵) ∩ ran 𝐹)))
10 fimacnvinrn 7105 . . 3 (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
1110adantr 480 . 2 ((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
127, 9, 113eqtr4rd 2791 1 ((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐹𝐴) = (𝐹 “ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  cin 3975  wss 3976  ccnv 5699  ran crn 5701  cima 5703  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579
This theorem is referenced by:  eulerpartgbij  34337  orvcval4  34425  preimaioomnf  46640
  Copyright terms: Public domain W3C validator