| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimacnvinrn2 | Structured version Visualization version GIF version | ||
| Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
| Ref | Expression |
|---|---|
| fimacnvinrn2 | ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass 4175 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∩ ran 𝐹) = (𝐴 ∩ (𝐵 ∩ ran 𝐹)) | |
| 2 | sseqin2 4170 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ 𝐵 ↔ (𝐵 ∩ ran 𝐹) = ran 𝐹) | |
| 3 | 2 | biimpi 216 | . . . . . 6 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐵 ∩ ran 𝐹) = ran 𝐹) |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (𝐵 ∩ ran 𝐹) = ran 𝐹) |
| 5 | 4 | ineq2d 4167 | . . . 4 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (𝐴 ∩ (𝐵 ∩ ran 𝐹)) = (𝐴 ∩ ran 𝐹)) |
| 6 | 1, 5 | eqtrid 2778 | . . 3 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ((𝐴 ∩ 𝐵) ∩ ran 𝐹) = (𝐴 ∩ ran 𝐹)) |
| 7 | 6 | imaeq2d 6008 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹)) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
| 8 | fimacnvinrn 7004 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹))) | |
| 9 | 8 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹))) |
| 10 | fimacnvinrn 7004 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) | |
| 11 | 10 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
| 12 | 7, 9, 11 | 3eqtr4rd 2777 | 1 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∩ cin 3896 ⊆ wss 3897 ◡ccnv 5613 ran crn 5615 “ cima 5617 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 |
| This theorem is referenced by: eulerpartgbij 34385 orvcval4 34474 preimaioomnf 46816 |
| Copyright terms: Public domain | W3C validator |