MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvinrn2 Structured version   Visualization version   GIF version

Theorem fimacnvinrn2 6844
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 17-Feb-2017.)
Assertion
Ref Expression
fimacnvinrn2 ((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐹𝐴) = (𝐹 “ (𝐴𝐵)))

Proof of Theorem fimacnvinrn2
StepHypRef Expression
1 inass 4199 . . . 4 ((𝐴𝐵) ∩ ran 𝐹) = (𝐴 ∩ (𝐵 ∩ ran 𝐹))
2 sseqin2 4195 . . . . . . 7 (ran 𝐹𝐵 ↔ (𝐵 ∩ ran 𝐹) = ran 𝐹)
32biimpi 218 . . . . . 6 (ran 𝐹𝐵 → (𝐵 ∩ ran 𝐹) = ran 𝐹)
43adantl 484 . . . . 5 ((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐵 ∩ ran 𝐹) = ran 𝐹)
54ineq2d 4192 . . . 4 ((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐴 ∩ (𝐵 ∩ ran 𝐹)) = (𝐴 ∩ ran 𝐹))
61, 5syl5eq 2871 . . 3 ((Fun 𝐹 ∧ ran 𝐹𝐵) → ((𝐴𝐵) ∩ ran 𝐹) = (𝐴 ∩ ran 𝐹))
76imaeq2d 5932 . 2 ((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐹 “ ((𝐴𝐵) ∩ ran 𝐹)) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
8 fimacnvinrn 6843 . . 3 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = (𝐹 “ ((𝐴𝐵) ∩ ran 𝐹)))
98adantr 483 . 2 ((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐹 “ (𝐴𝐵)) = (𝐹 “ ((𝐴𝐵) ∩ ran 𝐹)))
10 fimacnvinrn 6843 . . 3 (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
1110adantr 483 . 2 ((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
127, 9, 113eqtr4rd 2870 1 ((Fun 𝐹 ∧ ran 𝐹𝐵) → (𝐹𝐴) = (𝐹 “ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  cin 3938  wss 3939  ccnv 5557  ran crn 5559  cima 5561  Fun wfun 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-fo 6364  df-fv 6366
This theorem is referenced by:  eulerpartgbij  31634  orvcval4  31722  preimaioomnf  43004
  Copyright terms: Public domain W3C validator