![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimacnvinrn2 | Structured version Visualization version GIF version |
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
Ref | Expression |
---|---|
fimacnvinrn2 | ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4218 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∩ ran 𝐹) = (𝐴 ∩ (𝐵 ∩ ran 𝐹)) | |
2 | sseqin2 4214 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ 𝐵 ↔ (𝐵 ∩ ran 𝐹) = ran 𝐹) | |
3 | 2 | biimpi 215 | . . . . . 6 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐵 ∩ ran 𝐹) = ran 𝐹) |
4 | 3 | adantl 480 | . . . . 5 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (𝐵 ∩ ran 𝐹) = ran 𝐹) |
5 | 4 | ineq2d 4211 | . . . 4 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (𝐴 ∩ (𝐵 ∩ ran 𝐹)) = (𝐴 ∩ ran 𝐹)) |
6 | 1, 5 | eqtrid 2782 | . . 3 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ((𝐴 ∩ 𝐵) ∩ ran 𝐹) = (𝐴 ∩ ran 𝐹)) |
7 | 6 | imaeq2d 6058 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹)) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
8 | fimacnvinrn 7072 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹))) | |
9 | 8 | adantr 479 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹))) |
10 | fimacnvinrn 7072 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) | |
11 | 10 | adantr 479 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
12 | 7, 9, 11 | 3eqtr4rd 2781 | 1 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∩ cin 3946 ⊆ wss 3947 ◡ccnv 5674 ran crn 5676 “ cima 5678 Fun wfun 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 |
This theorem is referenced by: eulerpartgbij 33669 orvcval4 33757 preimaioomnf 45733 |
Copyright terms: Public domain | W3C validator |