| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimacnvinrn2 | Structured version Visualization version GIF version | ||
| Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
| Ref | Expression |
|---|---|
| fimacnvinrn2 | ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass 4208 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∩ ran 𝐹) = (𝐴 ∩ (𝐵 ∩ ran 𝐹)) | |
| 2 | sseqin2 4203 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ 𝐵 ↔ (𝐵 ∩ ran 𝐹) = ran 𝐹) | |
| 3 | 2 | biimpi 216 | . . . . . 6 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐵 ∩ ran 𝐹) = ran 𝐹) |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (𝐵 ∩ ran 𝐹) = ran 𝐹) |
| 5 | 4 | ineq2d 4200 | . . . 4 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (𝐴 ∩ (𝐵 ∩ ran 𝐹)) = (𝐴 ∩ ran 𝐹)) |
| 6 | 1, 5 | eqtrid 2783 | . . 3 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ((𝐴 ∩ 𝐵) ∩ ran 𝐹) = (𝐴 ∩ ran 𝐹)) |
| 7 | 6 | imaeq2d 6052 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹)) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
| 8 | fimacnvinrn 7066 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹))) | |
| 9 | 8 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ ((𝐴 ∩ 𝐵) ∩ ran 𝐹))) |
| 10 | fimacnvinrn 7066 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) | |
| 11 | 10 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
| 12 | 7, 9, 11 | 3eqtr4rd 2782 | 1 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∩ cin 3930 ⊆ wss 3931 ◡ccnv 5658 ran crn 5660 “ cima 5662 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 |
| This theorem is referenced by: eulerpartgbij 34409 orvcval4 34498 preimaioomnf 46715 |
| Copyright terms: Public domain | W3C validator |